Source code for gammapy.estimators.excess_map

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import copy
import logging
import numpy as np
from astropy.convolution import Tophat2DKernel
from astropy.coordinates import Angle
from gammapy.datasets import MapDataset, MapDatasetOnOff
from gammapy.maps import Map
from gammapy.stats import CashCountsStatistic, WStatCountsStatistic

__all__ = [
    "ExcessMapEstimator",
]

log = logging.getLogger(__name__)


def convolved_map_dataset_counts_statistics(dataset, kernel):
    """Return CountsDataset objects containing smoothed maps from the MapDataset"""
    # Kernel is modified later make a copy here
    kernel = copy.deepcopy(kernel)
    kernel.normalize("peak")

    # fft convolution adds numerical noise, to ensure integer results we call
    # np.rint
    n_on_conv = np.rint(dataset.counts.convolve(kernel.array).data)

    if isinstance(dataset, MapDatasetOnOff):
        background = dataset.background
        background.data[dataset.acceptance_off.data == 0] = 0.0
        background_conv = background.convolve(kernel.array).data

        n_off_conv = dataset.counts_off.convolve(kernel.array).data

        with np.errstate(invalid="ignore", divide="ignore"):
            alpha_conv = background_conv / n_off_conv

        return WStatCountsStatistic(n_on_conv.data, n_off_conv.data, alpha_conv.data)
    else:
        background_conv = dataset.npred().convolve(kernel.array).data
        return CashCountsStatistic(n_on_conv.data, background_conv.data)


[docs]class ExcessMapEstimator: """Computes correlated excess, significance and errors for MapDatasets. Parameters ---------- correlation_radius : ~astropy.coordinate.Angle correlation radius to use n_sigma : float Confidence level for the asymmetric errors expressed in number of sigma. Default is 1. n_sigma_ul : float Confidence level for the upper limits expressed in number of sigma. Default is 3. """ def __init__(self, correlation_radius="0.1 deg", nsigma=1, nsigma_ul=3): self.correlation_radius = correlation_radius self.nsigma = nsigma self.nsigma_ul = nsigma_ul @property def correlation_radius(self): return self._correlation_radius @correlation_radius.setter def correlation_radius(self, correlation_radius): """Sets radius""" self._correlation_radius = Angle(correlation_radius)
[docs] def run(self, dataset, steps="all"): """Compute correlated excess, Li & Ma significance and flux maps Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff` input image-like dataset steps : list of str Which steps to execute. Available options are: * "ts": estimate delta TS and significance * "err": estimate symmetric error * "errn-errp": estimate asymmetric errors. * "ul": estimate upper limits. By default all steps are executed. Returns ------- images : dict Dictionary containing result correlated maps. Keys are: * counts : correlated counts map * background : correlated background map * excess : correlated excess map * ts : delta TS map * significance : sqrt(delta TS), or Li-Ma significance map * err : symmetric error map (from covariance) * errn : negative error map * errp : positive error map * ul : upper limit map """ if not isinstance(dataset, MapDataset): raise ValueError("Unsupported dataset type") pixel_size = np.mean(np.abs(dataset.counts.geom.wcs.wcs.cdelt)) size = self.correlation_radius.deg / pixel_size kernel = Tophat2DKernel(size) geom = dataset.counts.geom self.counts_stat = convolved_map_dataset_counts_statistics(dataset, kernel) n_on = Map.from_geom(geom, data=self.counts_stat.n_on) bkg = Map.from_geom(geom, data=self.counts_stat.n_on - self.counts_stat.excess) excess = Map.from_geom(geom, data=self.counts_stat.excess) result = {"counts": n_on, "background": bkg, "excess": excess} if steps == "all": steps = ["ts", "err", "errn-errp", "ul"] if "ts" in steps: tsmap = Map.from_geom(geom, data=self.counts_stat.delta_ts) significance = Map.from_geom(geom, data=self.counts_stat.significance) result.update({"ts": tsmap, "significance": significance}) if "err" in steps: err = Map.from_geom(geom, data=self.counts_stat.error) result.update({"err": err}) if "errn-errp" in steps: errn = Map.from_geom(geom, data=self.counts_stat.compute_errn(self.nsigma)) errp = Map.from_geom(geom, data=self.counts_stat.compute_errp(self.nsigma)) result.update({"errn": errn, "errp": errp}) if "ul" in steps: ul = Map.from_geom( geom, data=self.counts_stat.compute_upper_limit(self.nsigma_ul) ) result.update({"ul": ul}) return result