ExcessMapEstimator

class gammapy.estimators.ExcessMapEstimator(correlation_radius='0.1 deg', nsigma=1, nsigma_ul=3)[source]

Bases: object

Computes correlated excess, significance and errors for MapDatasets.

Parameters
correlation_radius~astropy.coordinate.Angle

correlation radius to use

n_sigmafloat

Confidence level for the asymmetric errors expressed in number of sigma. Default is 1.

n_sigma_ulfloat

Confidence level for the upper limits expressed in number of sigma. Default is 3.

Attributes Summary

correlation_radius

Methods Summary

run(self, dataset[, steps])

Compute correlated excess, Li & Ma significance and flux maps

Attributes Documentation

correlation_radius

Methods Documentation

run(self, dataset, steps='all')[source]

Compute correlated excess, Li & Ma significance and flux maps

Parameters
datasetMapDataset or MapDatasetOnOff

input image-like dataset

stepslist of str

Which steps to execute. Available options are:

  • “ts”: estimate delta TS and significance

  • “err”: estimate symmetric error

  • “errn-errp”: estimate asymmetric errors.

  • “ul”: estimate upper limits.

By default all steps are executed.

Returns
imagesdict

Dictionary containing result correlated maps. Keys are:

  • counts : correlated counts map

  • background : correlated background map

  • excess : correlated excess map

  • ts : delta TS map

  • significance : sqrt(delta TS), or Li-Ma significance map

  • err : symmetric error map (from covariance)

  • errn : negative error map

  • errp : positive error map

  • ul : upper limit map