ExcessMapEstimator¶
-
class
gammapy.estimators.
ExcessMapEstimator
(correlation_radius='0.1 deg', nsigma=1, nsigma_ul=3)[source]¶ Bases:
object
Computes correlated excess, significance and errors for MapDatasets.
- Parameters
- correlation_radius~astropy.coordinate.Angle
correlation radius to use
- n_sigmafloat
Confidence level for the asymmetric errors expressed in number of sigma. Default is 1.
- n_sigma_ulfloat
Confidence level for the upper limits expressed in number of sigma. Default is 3.
Attributes Summary
Methods Summary
run
(self, dataset[, steps])Compute correlated excess, Li & Ma significance and flux maps
Attributes Documentation
-
correlation_radius
¶
Methods Documentation
-
run
(self, dataset, steps='all')[source]¶ Compute correlated excess, Li & Ma significance and flux maps
- Parameters
- dataset
MapDataset
orMapDatasetOnOff
input image-like dataset
- stepslist of str
Which steps to execute. Available options are:
“ts”: estimate delta TS and significance
“err”: estimate symmetric error
“errn-errp”: estimate asymmetric errors.
“ul”: estimate upper limits.
By default all steps are executed.
- dataset
- Returns
- imagesdict
Dictionary containing result correlated maps. Keys are:
counts : correlated counts map
background : correlated background map
excess : correlated excess map
ts : delta TS map
significance : sqrt(delta TS), or Li-Ma significance map
err : symmetric error map (from covariance)
errn : negative error map
errp : positive error map
ul : upper limit map