# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
from astropy.utils import lazyproperty
import astropy.units as u
from ..utils.fitting import Fit
from ..stats import cash
from ..maps import Map, MapAxis
__all__ = ["MapFit", "MapEvaluator"]
[docs]class MapFit(Fit):
"""Perform sky model likelihood fit on maps.
This is the first go at such a class. It's geared to the
`~gammapy.spectrum.SpectrumFit` class which does the 1D spectrum fit.
Parameters
----------
model : `~gammapy.cube.models.SkyModel`
Fit model
counts : `~gammapy.maps.WcsNDMap`
Counts cube
exposure : `~gammapy.maps.WcsNDMap`
Exposure cube
background : `~gammapy.maps.WcsNDMap`
Background Cube
mask : `~gammapy.maps.WcsNDMap`
Mask to apply for the fit. All the pixels that contain 1 or True are included
in the fit, all others are ignored.
psf : `~gammapy.cube.PSFKernel`
PSF kernel
edisp : `~gammapy.irf.EnergyDispersion`
Energy dispersion
"""
def __init__(
self, model, counts, exposure, background=None, mask=None, psf=None, edisp=None
):
if mask is not None and mask.data.dtype != np.dtype("bool"):
raise ValueError("mask data must have dtype bool")
self._model = model
self.counts = counts
self.exposure = exposure
self.background = background
self.mask = mask
self.psf = psf
self.edisp = edisp
self.evaluator = MapEvaluator(
model=self._model,
exposure=exposure,
background=self.background,
psf=self.psf,
edisp=self.edisp,
)
@property
def stat(self):
"""Likelihood per bin given the current model parameters"""
npred = self.evaluator.compute_npred()
return cash(n_on=self.counts.data, mu_on=npred)
[docs] def total_stat(self, parameters):
"""Total likelihood given the current model parameters"""
self._model.parameters = parameters
if self.mask:
stat = self.stat[self.mask.data]
else:
stat = self.stat
return np.sum(stat, dtype=np.float64)
[docs]class MapEvaluator(object):
"""Sky model evaluation on maps.
This is a first attempt to compute flux as well as predicted counts maps.
The basic idea is that this evaluator is created once at the start
of the analysis, and pre-computes some things.
It it then evaluated many times during likelihood fit when model parameters
change, re-using pre-computed quantities each time.
At the moment it does some things, e.g. cache and re-use energy and coordinate grids,
but overall it is not an efficient implementation yet.
For now, we only make it work for 3D WCS maps with an energy axis.
No HPX, no other axes, those can be added later here or via new
separate model evaluator classes.
We should discuss how to organise the model and IRF evaluation code,
and things like integrations and convolutions in a good way.
Parameters
----------
model : `~gammapy.cube.models.SkyModel`
Sky model
exposure : `~gammapy.maps.Map`
Exposure map
background : `~gammapy.maps.Map`
background map
psf : `~gammapy.cube.PSFKernel`
PSF kernel
edisp : `~gammapy.irf.EnergyDispersion`
Energy dispersion
"""
def __init__(
self, model=None, exposure=None, background=None, psf=None, edisp=None
):
self.model = model
self.exposure = exposure
self.background = background
self.psf = psf
self.edisp = edisp
@lazyproperty
def geom(self):
"""This will give the energy axes in e_true"""
return self.exposure.geom
@lazyproperty
def geom_image(self):
return self.geom.to_image()
@lazyproperty
def energy_center(self):
"""True energy axis bin centers (`~astropy.units.Quantity`)"""
energy_axis = self.geom.get_axis_by_name("energy")
energy = energy_axis.center * energy_axis.unit
return energy[:, np.newaxis, np.newaxis]
@lazyproperty
def energy_edges(self):
"""Energy axis bin edges (`~astropy.units.Quantity`)"""
energy_axis = self.geom.get_axis_by_name("energy")
energy = energy_axis.edges * energy_axis.unit
return energy[:, np.newaxis, np.newaxis]
@lazyproperty
def energy_bin_width(self):
"""Energy axis bin widths (`astropy.units.Quantity`)"""
return np.diff(self.energy_edges, axis=0)
@lazyproperty
def lon_lat(self):
"""Spatial coordinate pixel centers.
Returns ``lon, lat`` tuple of `~astropy.units.Quantity`.
"""
lon, lat = self.geom_image.get_coord()
return (u.Quantity(lon, "deg", copy=False), u.Quantity(lat, "deg", copy=False))
@lazyproperty
def lon(self):
return self.lon_lat[0]
@lazyproperty
def lat(self):
return self.lon_lat[1]
@lazyproperty
def solid_angle(self):
"""Solid angle per pixel"""
return self.geom.solid_angle()
@lazyproperty
def bin_volume(self):
"""Map pixel bin volume (solid angle times energy bin width)."""
omega = self.solid_angle
de = self.energy_bin_width
return omega * de
[docs] def compute_dnde(self):
"""Compute model differential flux at map pixel centers.
Returns
-------
model_map : `~gammapy.maps.Map`
Sky cube with data filled with evaluated model values.
Units: ``cm-2 s-1 TeV-1 deg-2``
"""
coord = (self.lon, self.lat, self.energy_center)
dnde = self.model.evaluate(*coord)
return dnde
[docs] def compute_flux(self):
"""Compute model integral flux over map pixel volumes.
For now, we simply multiply dnde with bin volume.
"""
dnde = self.compute_dnde()
volume = self.bin_volume
flux = dnde * volume
return flux
[docs] def apply_exposure(self, flux):
"""Compute npred cube
For now just divide flux cube by exposure
"""
npred = (flux * self.exposure.quantity).to_value("")
return self.exposure.copy(data=npred)
[docs] def apply_psf(self, npred):
"""Convolve npred cube with PSF"""
return npred.convolve(self.psf)
[docs] def apply_edisp(self, npred):
"""Convolve map data with energy dispersion.
Parameters
----------
npred : `~gammapy.maps.Map`
Predicted counts in true energy bins
Returns
---------
npred_reco : `~gammapy.maps.Map`
Predicted counts in reco energy bins
"""
loc = npred.geom.get_axis_index_by_name("energy")
data = np.rollaxis(npred.data, loc, len(npred.data.shape))
data = np.dot(data, self.edisp.pdf_matrix)
data = np.rollaxis(data, -1, loc)
e_reco_axis = MapAxis.from_edges(
self.edisp.e_reco.bins, unit=self.edisp.e_reco.unit
)
geom_ereco = self.exposure.geom.to_image().to_cube(axes=[e_reco_axis])
npred = Map.from_geom(geom_ereco, unit="")
npred.data = data
return npred
[docs] def compute_npred(self):
"""
Evaluate model predicted counts.
Returns
-------
npred.data : ~numpy.ndarray
array of the predicted counts in each bin (in reco energy)
"""
flux = self.compute_flux()
npred = self.apply_exposure(flux)
if self.psf is not None:
npred = self.apply_psf(npred)
if self.edisp is not None:
npred = self.apply_edisp(npred)
if self.background:
npred.data += self.background.data
return npred.data