# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
from collections import OrderedDict
import numpy as np
from astropy.wcs import WCS
from astropy.io import fits
from astropy.coordinates import SkyCoord, Angle
from astropy.coordinates.angle_utilities import angular_separation
from astropy.wcs.utils import proj_plane_pixel_scales
import astropy.units as u
from regions import SkyRegion
from ..utils.wcs import get_resampled_wcs
from .geom import MapGeom, MapCoord, pix_tuple_to_idx, skycoord_to_lonlat
from .geom import get_shape, make_axes, find_and_read_bands
__all__ = ["WcsGeom"]
def _check_width(width):
"""Check and normalise width argument.
Always returns tuple (lon, lat) as float in degrees.
"""
if isinstance(width, tuple):
lon = Angle(width[0], "deg").deg
lat = Angle(width[1], "deg").deg
return lon, lat
else:
angle = Angle(width, "deg").deg
if np.isscalar(angle):
return angle, angle
else:
return tuple(angle)
def cast_to_shape(param, shape, dtype):
"""Cast a tuple of parameter arrays to a given shape."""
if not isinstance(param, tuple):
param = [param]
param = [np.array(p, ndmin=1, dtype=dtype) for p in param]
if len(param) == 1:
param = [param[0].copy(), param[0].copy()]
for i, p in enumerate(param):
if p.size > 1 and p.shape != shape:
raise ValueError
if p.shape == shape:
continue
param[i] = p * np.ones(shape, dtype=dtype)
return tuple(param)
# TODO: remove this function, move code to the one caller below
def _make_image_header(
nxpix=100,
nypix=100,
binsz=0.1,
xref=0,
yref=0,
proj="CAR",
coordsys="GAL",
xrefpix=None,
yrefpix=None,
):
"""Generate a FITS header from scratch.
Uses the same parameter names as the Fermi tool gtbin.
If no reference pixel position is given it is assumed ot be
at the center of the image.
Parameters
----------
nxpix : int, optional
Number of pixels in x axis. Default is 100.
nypix : int, optional
Number of pixels in y axis. Default is 100.
binsz : float, optional
Bin size for x and y axes in units of degrees. Default is 0.1.
xref : float, optional
Coordinate system value at reference pixel for x axis. Default is 0.
yref : float, optional
Coordinate system value at reference pixel for y axis. Default is 0.
proj : string, optional
Projection type. Default is 'CAR' (cartesian).
coordsys : {'CEL', 'GAL'}, optional
Coordinate system. Default is 'GAL' (Galactic).
xrefpix : float, optional
Coordinate system reference pixel for x axis. Default is None.
yrefpix: float, optional
Coordinate system reference pixel for y axis. Default is None.
Returns
-------
header : `~astropy.io.fits.Header`
Header
"""
nxpix = int(nxpix)
nypix = int(nypix)
if not xrefpix:
xrefpix = (nxpix + 1) / 2.0
if not yrefpix:
yrefpix = (nypix + 1) / 2.0
if coordsys == "CEL":
ctype1, ctype2 = "RA---", "DEC--"
elif coordsys == "GAL":
ctype1, ctype2 = "GLON-", "GLAT-"
else:
raise ValueError("Unsupported coordsys: {!r}".format(coordsys))
pars = {
"NAXIS": 2,
"NAXIS1": nxpix,
"NAXIS2": nypix,
"CTYPE1": ctype1 + proj,
"CRVAL1": xref,
"CRPIX1": xrefpix,
"CUNIT1": "deg",
"CDELT1": -binsz,
"CTYPE2": ctype2 + proj,
"CRVAL2": yref,
"CRPIX2": yrefpix,
"CUNIT2": "deg",
"CDELT2": binsz,
}
header = fits.Header()
header.update(pars)
return header
[docs]class WcsGeom(MapGeom):
"""Geometry class for WCS maps.
This class encapsulates both the WCS transformation object and the
the image extent (number of pixels in each dimension). Provides
methods for accessing the properties of the WCS object and
performing transformations between pixel and world coordinates.
Parameters
----------
wcs : `~astropy.wcs.WCS`
WCS projection object
npix : tuple
Number of pixels in each spatial dimension
cdelt : tuple
Pixel size in each image plane. If none then a constant pixel size will be used.
crpix : tuple
Reference pixel coordinate in each image plane.
axes : list
Axes for non-spatial dimensions
conv : {'gadf', 'fgst-ccube', 'fgst-template'}
Serialization format convention. This sets the default format
that will be used when writing this geometry to a file.
"""
_slice_spatial_axes = slice(0, 2)
_slice_non_spatial_axes = slice(2, -1)
is_hpx = False
def __init__(self, wcs, npix, cdelt=None, crpix=None, axes=None, conv="gadf"):
self._wcs = wcs
self._coordsys = get_coordys(wcs)
self._projection = get_projection(wcs)
self._conv = conv
self._axes = make_axes(axes, conv)
if cdelt is None:
cdelt = tuple(np.abs(self.wcs.wcs.cdelt))
# Shape to use for WCS transformations
wcs_shape = max([get_shape(t) for t in [npix, cdelt]])
if np.sum(wcs_shape) > 1 and wcs_shape != self.shape:
raise ValueError()
self._npix = cast_to_shape(npix, wcs_shape, int)
self._cdelt = cast_to_shape(cdelt, wcs_shape, float)
# By convention CRPIX is indexed from 1
if crpix is None:
crpix = tuple(1.0 + (np.array(self._npix) - 1.0) / 2.0)
self._crpix = crpix
@property
def data_shape(self):
"""Shape of the Numpy data array matching this geometry."""
npix_shape = [np.max(self.npix[0]), np.max(self.npix[1])]
ax_shape = [ax.nbin for ax in self.axes]
return tuple(npix_shape + ax_shape)[::-1]
@property
def wcs(self):
"""WCS projection object."""
return self._wcs
@property
def coordsys(self):
"""Coordinate system of the projection, either Galactic ('GAL') or
Equatorial ('CEL')."""
return self._coordsys
@property
def projection(self):
"""Map projection."""
return self._projection
@property
def is_allsky(self):
"""Flag for all-sky maps."""
if np.all(np.isclose(self._npix[0] * self._cdelt[0], 360.0)):
return True
else:
return False
@property
def is_regular(self):
"""Flag identifying whether this geometry is regular in non-spatial
dimensions. False for multi-resolution or irregular
geometries. If true all image planes have the same pixel
geometry.
"""
if self.npix[0].size > 1:
return False
else:
return True
@property
def width(self):
"""Tuple with image dimension in deg in longitude and latitude."""
return (self._cdelt[0] * self._npix[0], self._cdelt[1] * self._npix[1])
@property
def pixel_area(self):
"""Pixel area in deg^2."""
# FIXME: Correctly compute solid angle for projection
return self._cdelt[0] * self._cdelt[1]
@property
def npix(self):
"""Tuple with image dimension in pixels in longitude and latitude."""
return self._npix
@property
def conv(self):
"""Name of default FITS convention associated with this geometry."""
return self._conv
@property
def axes(self):
"""List of non-spatial axes."""
return self._axes
@property
def shape(self):
"""Shape of non-spatial axes."""
return tuple([ax.nbin for ax in self._axes])
@property
def ndim(self):
return len(self.data_shape)
@property
def center_coord(self):
"""Map coordinate of the center of the geometry.
Returns
-------
coord : tuple
"""
return self.pix_to_coord(self.center_pix)
@property
def center_pix(self):
"""Pixel coordinate of the center of the geometry.
Returns
-------
pix : tuple
"""
return tuple((np.array(self.data_shape) - 1.0) / 2)[::-1]
@property
def center_skydir(self):
"""Sky coordinate of the center of the geometry.
Returns
-------
pix : `~astropy.coordinates.SkyCoord`
"""
return SkyCoord.from_pixel(self.center_pix[0], self.center_pix[1], self.wcs)
@property
def pixel_scales(self):
"""
Pixel scale.
Returns angles along each axis of the image at the CRPIX location once
it is projected onto the plane of intermediate world coordinates.
Returns
-------
angle: `~astropy.coordinates.Angle`
"""
return Angle(proj_plane_pixel_scales(self.wcs), "deg")
[docs] @classmethod
def create(
cls,
npix=None,
binsz=0.5,
proj="CAR",
coordsys="CEL",
refpix=None,
axes=None,
skydir=None,
width=None,
conv="gadf",
):
"""Create a WCS geometry object.
Pixelization of the map is set with
``binsz`` and one of either ``npix`` or ``width`` arguments.
For maps with non-spatial dimensions a different pixelization
can be used for each image plane by passing a list or array
argument for any of the pixelization parameters. If both npix
and width are None then an all-sky geometry will be created.
Parameters
----------
npix : int or tuple or list
Width of the map in pixels. A tuple will be interpreted as
parameters for longitude and latitude axes. For maps with
non-spatial dimensions, list input can be used to define a
different map width in each image plane. This option
supersedes width.
width : float or tuple or list
Width of the map in degrees. A tuple will be interpreted
as parameters for longitude and latitude axes. For maps
with non-spatial dimensions, list input can be used to
define a different map width in each image plane.
binsz : float or tuple or list
Map pixel size in degrees. A tuple will be interpreted
as parameters for longitude and latitude axes. For maps
with non-spatial dimensions, list input can be used to
define a different bin size in each image plane.
skydir : tuple or `~astropy.coordinates.SkyCoord`
Sky position of map center. Can be either a SkyCoord
object or a tuple of longitude and latitude in deg in the
coordinate system of the map.
coordsys : {'CEL', 'GAL'}, optional
Coordinate system, either Galactic ('GAL') or Equatorial ('CEL').
axes : list
List of non-spatial axes.
proj : string, optional
Any valid WCS projection type. Default is 'CAR' (cartesian).
refpix : tuple
Reference pixel of the projection. If None this will be
set to the center of the map.
conv : string, optional
FITS format convention ('fgst-ccube', 'fgst-template',
'gadf'). Default is 'gadf'.
Returns
-------
geom : `~WcsGeom`
A WCS geometry object.
Examples
--------
>>> from gammapy.maps import WcsGeom
>>> from gammapy.maps import MapAxis
>>> axis = MapAxis.from_bounds(0,1,2)
>>> geom = WcsGeom.create(npix=(100,100), binsz=0.1)
>>> geom = WcsGeom.create(npix=[100,200], binsz=[0.1,0.05], axes=[axis])
>>> geom = WcsGeom.create(width=[5.0,8.0], binsz=[0.1,0.05], axes=[axis])
>>> geom = WcsGeom.create(npix=([100,200],[100,200]), binsz=0.1, axes=[axis])
"""
if skydir is None:
xref, yref = (0.0, 0.0)
elif isinstance(skydir, tuple):
xref, yref = skydir
elif isinstance(skydir, SkyCoord):
xref, yref, frame = skycoord_to_lonlat(skydir, coordsys=coordsys)
else:
raise ValueError("Invalid type for skydir: {!r}".format(type(skydir)))
if width is not None:
width = _check_width(width)
shape = max([get_shape(t) for t in [npix, binsz, width]])
binsz = cast_to_shape(binsz, shape, float)
# If both npix and width are None then create an all-sky geometry
if npix is None and width is None:
width = (360.0, 180.0)
if npix is None:
width = cast_to_shape(width, shape, float)
npix = (
np.rint(width[0] / binsz[0]).astype(int),
np.rint(width[1] / binsz[1]).astype(int),
)
else:
npix = cast_to_shape(npix, shape, int)
if refpix is None:
refpix = (None, None)
header = _make_image_header(
nxpix=npix[0].flat[0],
nypix=npix[1].flat[0],
binsz=binsz[0].flat[0],
xref=float(xref),
yref=float(yref),
proj=proj,
coordsys=coordsys,
xrefpix=refpix[0],
yrefpix=refpix[1],
)
wcs = WCS(header)
return cls(wcs, npix, cdelt=binsz, axes=axes, conv=conv)
def _make_bands_cols(self, hdu=None, conv=None):
cols = []
if not self.is_regular:
cols += [
fits.Column(
"NPIX",
"2I",
dim="(2)",
array=np.vstack((np.ravel(self.npix[0]), np.ravel(self.npix[1]))).T,
)
]
cols += [
fits.Column(
"CDELT",
"2E",
dim="(2)",
array=np.vstack(
(np.ravel(self._cdelt[0]), np.ravel(self._cdelt[1]))
).T,
)
]
cols += [
fits.Column(
"CRPIX",
"2E",
dim="(2)",
array=np.vstack(
(np.ravel(self._crpix[0]), np.ravel(self._crpix[1]))
).T,
)
]
return cols
[docs] def get_image_shape(self, idx):
"""Get the shape of the image plane at index ``idx``."""
if self.is_regular:
return int(self.npix[0]), int(self.npix[1])
else:
return int(self.npix[0][idx]), int(self.npix[1][idx])
[docs] def get_idx(self, idx=None, flat=False):
pix = self.get_pix(idx=idx, mode="center")
if flat:
pix = tuple([p[np.isfinite(p)] for p in pix])
return pix_tuple_to_idx(pix)
[docs] def get_pix(self, idx=None, mode="center"):
"""Get map pix coordinates from the geometry.
Parameters
----------
mode : {'center', 'edges'}
Get center or edge pix coordinates for the spatial axes.
Returns
-------
coord : tuple
Map pix coordinate tuple.
"""
# FIXME: Figure out if there is some way to employ open/sparse
# vectors
# FIXME: It would be more efficient to split this into one
# method that computes indices and a method that casts
# those to floats and adds the appropriate offset
npix = copy.deepcopy(self.npix)
if mode == "edges":
for pix_num in npix[:2]:
pix_num += 1
if self.axes and not self.is_regular:
shape = (np.max(self._npix[0]), np.max(self._npix[1]))
if idx is None:
shape = shape + self.shape
else:
shape = shape + (1,) * len(self.axes)
pix2 = [
np.full(shape, np.nan, dtype=float) for i in range(2 + len(self.axes))
]
for idx_img in np.ndindex(self.shape):
if idx is not None and idx_img != idx:
continue
npix0, npix1 = npix[0][idx_img], npix[1][idx_img]
pix_img = np.meshgrid(
np.arange(npix0), np.arange(npix1), indexing="ij", sparse=False
)
if idx is None:
s_img = (slice(0, npix0), slice(0, npix1)) + idx_img
else:
s_img = (slice(0, npix0), slice(0, npix1)) + (0,) * len(self.axes)
pix2[0][s_img] = pix_img[0]
pix2[1][s_img] = pix_img[1]
for j in range(len(self.axes)):
pix2[j + 2][s_img] = idx_img[j]
pix = [t.T for t in pix2]
else:
pix = [np.arange(npix[0], dtype=float), np.arange(npix[1], dtype=float)]
if idx is None:
pix += [np.arange(ax.nbin, dtype=float) for ax in self.axes]
else:
pix += [float(t) for t in idx]
pix = np.meshgrid(*pix[::-1], indexing="ij", sparse=False)[::-1]
if mode == "edges":
for pix_array in pix[self._slice_spatial_axes]:
pix_array -= 0.5
coords = self.pix_to_coord(pix)
m = np.isfinite(coords[0])
for i in range(len(pix)):
pix[i][~m] = np.nan
return pix
[docs] def get_coord(self, idx=None, flat=False, mode="center"):
"""Get map coordinates from the geometry.
Parameters
----------
mode : {'center', 'edges'}
Get center or edge coordinates for the spatial axes.
Returns
-------
coord : `~MapCoord`
Map coordinate object.
"""
pix = self.get_pix(idx=idx, mode=mode)
coords = self.pix_to_coord(pix)
if flat:
coords = tuple([c[np.isfinite(c)] for c in coords])
axes_names = ["lon", "lat"] + [ax.name for ax in self.axes]
cdict = OrderedDict(zip(axes_names, coords))
return MapCoord.create(cdict, coordsys=self.coordsys)
[docs] def coord_to_pix(self, coords):
coords = MapCoord.create(coords, coordsys=self.coordsys)
if coords.size == 0:
return tuple([np.array([]) for i in range(coords.ndim)])
c = self.coord_to_tuple(coords)
# Variable Bin Size
if not self.is_regular:
bins = [ax.coord_to_pix(c[i + 2]) for i, ax in enumerate(self.axes)]
idxs = tuple(
[
np.clip(ax.coord_to_idx(c[i + 2]), 0, ax.nbin - 1)
for i, ax in enumerate(self.axes)
]
)
crpix = [t[idxs] for t in self._crpix]
cdelt = [t[idxs] for t in self._cdelt]
pix = world2pix(self.wcs, cdelt, crpix, (coords.lon, coords.lat))
pix = list(pix) + bins
else:
pix = self._wcs.wcs_world2pix(coords.lon, coords.lat, 0)
for i, ax in enumerate(self.axes):
pix += [ax.coord_to_pix(c[i + 2])]
return tuple(pix)
[docs] def pix_to_coord(self, pix):
# Variable Bin Size
if not self.is_regular:
idxs = pix_tuple_to_idx([pix[2 + i] for i, ax in enumerate(self.axes)])
vals = [ax.pix_to_coord(pix[2 + i]) for i, ax in enumerate(self.axes)]
crpix = [t[idxs] for t in self._crpix]
cdelt = [t[idxs] for t in self._cdelt]
coords = pix2world(self.wcs, cdelt, crpix, pix[:2])
coords += vals
else:
coords = self._wcs.wcs_pix2world(pix[0], pix[1], 0)
for i, ax in enumerate(self.axes):
coords += [ax.pix_to_coord(pix[i + 2])]
return tuple(coords)
[docs] def pix_to_idx(self, pix, clip=False):
# TODO: copy idx to avoid modifying input pix?
# pix_tuple_to_idx seems to always make a copy!?
idxs = pix_tuple_to_idx(pix)
if not self.is_regular:
ibin = [pix[2 + i] for i, ax in enumerate(self.axes)]
ibin = pix_tuple_to_idx(ibin)
for i, ax in enumerate(self.axes):
np.clip(ibin[i], 0, ax.nbin - 1, out=ibin[i])
npix = (self.npix[0][ibin], self.npix[1][ibin])
else:
npix = self.npix
for i, idx in enumerate(idxs):
if clip:
if i < 2:
np.clip(idxs[i], 0, npix[i], out=idxs[i])
else:
np.clip(idxs[i], 0, self.axes[i - 2].nbin - 1, out=idxs[i])
else:
if i < 2:
np.putmask(idxs[i], (idx < 0) | (idx >= npix[i]), -1)
else:
np.putmask(idxs[i], (idx < 0) | (idx >= self.axes[i - 2].nbin), -1)
return idxs
[docs] def contains(self, coords):
idx = self.coord_to_idx(coords)
return np.all(np.stack([t != -1 for t in idx]), axis=0)
[docs] def to_image(self):
npix = (np.max(self._npix[0]), np.max(self._npix[1]))
cdelt = (np.max(self._cdelt[0]), np.max(self._cdelt[1]))
return self.__class__(self._wcs, npix, cdelt=cdelt)
[docs] def to_cube(self, axes):
npix = (np.max(self._npix[0]), np.max(self._npix[1]))
cdelt = (np.max(self._cdelt[0]), np.max(self._cdelt[1]))
axes = copy.deepcopy(self.axes) + axes
return self.__class__(self._wcs.deepcopy(), npix, cdelt=cdelt, axes=axes)
[docs] def pad(self, pad_width):
if np.isscalar(pad_width):
pad_width = (pad_width, pad_width)
npix = (self.npix[0] + 2 * pad_width[0], self.npix[1] + 2 * pad_width[1])
wcs = self._wcs.deepcopy()
wcs.wcs.crpix += np.array(pad_width)
cdelt = copy.deepcopy(self._cdelt)
return self.__class__(wcs, npix, cdelt=cdelt, axes=copy.deepcopy(self.axes))
[docs] def crop(self, crop_width):
if np.isscalar(crop_width):
crop_width = (crop_width, crop_width)
npix = (self.npix[0] - 2 * crop_width[0], self.npix[1] - 2 * crop_width[1])
wcs = self._wcs.deepcopy()
wcs.wcs.crpix -= np.array(crop_width)
cdelt = copy.deepcopy(self._cdelt)
return self.__class__(wcs, npix, cdelt=cdelt, axes=copy.deepcopy(self.axes))
[docs] def downsample(self, factor):
if not np.all(np.mod(self.npix[0], factor) == 0) or not np.all(
np.mod(self.npix[1], factor) == 0
):
raise ValueError(
"Data shape not divisible by factor {!r} in all axes."
" You need to pad prior to calling downsample.".format(factor)
)
npix = (self.npix[0] / factor, self.npix[1] / factor)
cdelt = (self._cdelt[0] * factor, self._cdelt[1] * factor)
wcs = get_resampled_wcs(self.wcs, factor, True)
return self.__class__(wcs, npix, cdelt=cdelt, axes=copy.deepcopy(self.axes))
[docs] def upsample(self, factor):
npix = (self.npix[0] * factor, self.npix[1] * factor)
cdelt = (self._cdelt[0] / factor, self._cdelt[1] / factor)
wcs = get_resampled_wcs(self.wcs, factor, False)
return self.__class__(wcs, npix, cdelt=cdelt, axes=copy.deepcopy(self.axes))
[docs] def solid_angle(self):
"""Solid angle array (`~astropy.units.Quantity` in ``sr``).
The array has the same dimension as the WcsGeom object.
To return solid angles for the spatial dimensions only use::
WcsGeom.to_image().solid_angle()
"""
coord = self.get_coord(mode="edges")
lon = coord.lon * np.pi / 180.0
lat = coord.lat * np.pi / 180.0
# Compute solid angle using the approximation that it's
# the product between angular separation of pixel corners.
# First index is "y", second index is "x"
ylo_xlo = lon[..., :-1, :-1], lat[..., :-1, :-1]
ylo_xhi = lon[..., :-1, 1:], lat[..., :-1, 1:]
yhi_xlo = lon[..., 1:, :-1], lat[..., 1:, :-1]
dx = angular_separation(*(ylo_xlo + ylo_xhi))
dy = angular_separation(*(ylo_xlo + yhi_xlo))
return u.Quantity(dx * dy, "sr", copy=False)
[docs] def separation(self, center):
"""Compute sky separation wrt a given center.
Parameters
----------
center : `~astropy.coordinates.SkyCoord`
Center position
Returns
-------
separation : `~astropy.coordinates.Angle`
Separation angle array (2D)
"""
coord = self.to_image().get_coord()
return center.separation(coord.skycoord)
[docs] def region_mask(self, regions, inside=True):
"""Create a mask from a given list of regions
Parameters
----------
regions : list of `~regions.Region`
Python list of regions (pixel or sky regions accepted)
inside : bool
For ``inside=True``, pixels in the region to True (the default).
For ``inside=False``, pixels in the region are False.
Returns
-------
mask_map : `~numpy.ndarray` of boolean type
Boolean region mask
Examples
--------
Make an exclusion mask for a circular region::
from regions import CircleSkyRegion
from astropy.coordinates import SkyCoord, Angle
from gammapy.maps import WcsNDMap, WcsGeom
pos = SkyCoord(0, 0, unit='deg')
geom = WcsGeom.create(skydir=pos, npix=100, binsz=0.1)
region = CircleSkyRegion(
SkyCoord(3, 2, unit='deg'),
Angle(1, 'deg'),
)
mask = geom.region_mask([region], inside=False)
Note how we made a list with a single region,
since this method expects a list of regions.
The return ``mask`` is a boolean Numpy array.
If you want a map object (e.g. for storing in FITS or plotting),
this is how you can make the map::
mask_map = WcsNDMap(geom=geom, data=mask)
mask_map.plot()
"""
from regions import PixCoord
if not self.is_regular:
raise ValueError("Multi-resolution maps not supported yet")
idx = self.get_idx()
pixcoord = PixCoord(idx[0], idx[1])
mask = np.zeros(self.data_shape, dtype=bool)
for region in regions:
if isinstance(region, SkyRegion):
region = region.to_pixel(self.wcs)
mask += region.contains(pixcoord)
if inside is False:
np.logical_not(mask, out=mask)
return mask
def __repr__(self):
str_ = self.__class__.__name__
str_ += "\n\n"
axes = ["lon", "lat"] + [_.name for _ in self.axes]
str_ += "\taxes : {}\n".format(", ".join(axes))
str_ += "\tshape : {}\n".format(self.data_shape[::-1])
str_ += "\tndim : {}\n".format(self.ndim)
str_ += "\tcoordsys : {}\n".format(self.coordsys)
str_ += "\tprojection : {}\n".format(self.projection)
lon = self.center_skydir.data.lon.deg
lat = self.center_skydir.data.lat.deg
str_ += "\tcenter : {:.1f} deg, {:.1f} deg\n".format(lon, lat)
str_ += "\twidth : {width[0][0]:.1f} x {width[1][0]:.1f} " "deg\n".format(
width=self.width
)
return str_
def __eq__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
# check overall shape and axes compatibility
if self.data_shape != other.data_shape:
return False
for axis, otheraxis in zip(self.axes, other.axes):
if axis != otheraxis:
return False
# check WCS consistency with a priori tolerance of 1e-6
return self.wcs.wcs.compare(other.wcs.wcs, tolerance=1e-6)
def __ne__(self, other):
return not self.__eq__(other)
def create_wcs(
skydir, coordsys="CEL", projection="AIT", cdelt=1.0, crpix=1.0, axes=None
):
"""Create a WCS object.
Parameters
----------
skydir : `~astropy.coordinates.SkyCoord`
Sky coordinate of the WCS reference point
coordsys : str
TODO
projection : str
TODO
cdelt : float
TODO
crpix : float or (float,float)
In the first case the same value is used for x and y axes
axes : list
List of non-spatial axes
"""
naxis = 2
if axes is not None:
naxis += len(axes)
w = WCS(naxis=naxis)
if coordsys == "CEL":
w.wcs.ctype[0] = "RA---{}".format(projection)
w.wcs.ctype[1] = "DEC--{}".format(projection)
w.wcs.crval[0] = skydir.icrs.ra.deg
w.wcs.crval[1] = skydir.icrs.dec.deg
elif coordsys == "GAL":
w.wcs.ctype[0] = "GLON-{}".format(projection)
w.wcs.ctype[1] = "GLAT-{}".format(projection)
w.wcs.crval[0] = skydir.galactic.l.deg
w.wcs.crval[1] = skydir.galactic.b.deg
else:
raise ValueError("Invalid coordsys: {!r}".format(coordsys))
if isinstance(crpix, tuple):
w.wcs.crpix[0] = crpix[0]
w.wcs.crpix[1] = crpix[1]
else:
w.wcs.crpix[0] = crpix
w.wcs.crpix[1] = crpix
w.wcs.cdelt[0] = -cdelt
w.wcs.cdelt[1] = cdelt
w = WCS(w.to_header())
# FIXME: Figure out what to do here
# if naxis == 3 and energies is not None:
# w.wcs.crpix[2] = 1
# w.wcs.crval[2] = energies[0]
# w.wcs.cdelt[2] = energies[1] - energies[0]
# w.wcs.ctype[2] = 'Energy'
# w.wcs.cunit[2] = 'MeV'
return w
def wcs_add_energy_axis(wcs, energies):
"""Copy a WCS object, and add on the energy axis.
Parameters
----------
wcs : `~astropy.wcs.WCS`
WCS
energies : array-like
Array of energies
"""
if wcs.naxis != 2:
raise ValueError("WCS naxis must be 2. Got: {}".format(wcs.naxis))
w = WCS(naxis=3)
w.wcs.crpix[0] = wcs.wcs.crpix[0]
w.wcs.crpix[1] = wcs.wcs.crpix[1]
w.wcs.ctype[0] = wcs.wcs.ctype[0]
w.wcs.ctype[1] = wcs.wcs.ctype[1]
w.wcs.crval[0] = wcs.wcs.crval[0]
w.wcs.crval[1] = wcs.wcs.crval[1]
w.wcs.cdelt[0] = wcs.wcs.cdelt[0]
w.wcs.cdelt[1] = wcs.wcs.cdelt[1]
w = WCS(w.to_header())
w.wcs.crpix[2] = 1
w.wcs.crval[2] = energies[0]
w.wcs.cdelt[2] = energies[1] - energies[0]
w.wcs.ctype[2] = "Energy"
return w
def offset_to_sky(skydir, offset_lon, offset_lat, coordsys="CEL", projection="AIT"):
"""Convert a cartesian offset (X,Y) in the given projection into
a pair of spherical coordinates."""
offset_lon = np.array(offset_lon, ndmin=1)
offset_lat = np.array(offset_lat, ndmin=1)
w = create_wcs(skydir, coordsys, projection)
pixcrd = np.vstack((offset_lon, offset_lat)).T
return w.wcs_pix2world(pixcrd, 0)
def sky_to_offset(skydir, lon, lat, coordsys="CEL", projection="AIT"):
"""Convert sky coordinates to a projected offset.
This function is the inverse of offset_to_sky.
"""
w = create_wcs(skydir, coordsys, projection)
skycrd = np.vstack((lon, lat)).T
if len(skycrd) == 0:
return skycrd
return w.wcs_world2pix(skycrd, 0)
def offset_to_skydir(skydir, offset_lon, offset_lat, coordsys="CEL", projection="AIT"):
"""Convert a cartesian offset (X,Y) in the given projection into
a SkyCoord."""
offset_lon = np.array(offset_lon, ndmin=1)
offset_lat = np.array(offset_lat, ndmin=1)
w = create_wcs(skydir, coordsys, projection)
return SkyCoord.from_pixel(offset_lon, offset_lat, w, 0)
def pix2world(wcs, cdelt, crpix, pix):
"""Perform pixel to world coordinate transformation for a WCS
projection with a given pixel size (CDELT) and reference pixel
(CRPIX). This method can be used to perform WCS transformations
for projections with different pixelizations but the same
reference coordinate (CRVAL), projection type, and coordinate
system.
Parameters
----------
wcs : `astropy.wcs.WCS`
WCS transform object.
cdelt : tuple
Tuple of X/Y pixel size in deg. Each element should have the
same length as ``pix``.
crpix : tuple
Tuple of reference pixel parameters in X and Y dimensions. Each
element should have the same length as ``pix``.
pix : tuple
Tuple of pixel coordinates.
"""
pix_ratio = [
np.abs(wcs.wcs.cdelt[0] / cdelt[0]),
np.abs(wcs.wcs.cdelt[1] / cdelt[1]),
]
pix = (
(pix[0] - (crpix[0] - 1.0)) / pix_ratio[0] + wcs.wcs.crpix[0] - 1.0,
(pix[1] - (crpix[1] - 1.0)) / pix_ratio[1] + wcs.wcs.crpix[1] - 1.0,
)
return wcs.wcs_pix2world(pix[0], pix[1], 0)
def world2pix(wcs, cdelt, crpix, coord):
pix_ratio = [
np.abs(wcs.wcs.cdelt[0] / cdelt[0]),
np.abs(wcs.wcs.cdelt[1] / cdelt[1]),
]
pix = wcs.wcs_world2pix(coord[0], coord[1], 0)
return (
(pix[0] - (wcs.wcs.crpix[0] - 1.0)) * pix_ratio[0] + crpix[0] - 1.0,
(pix[1] - (wcs.wcs.crpix[1] - 1.0)) * pix_ratio[1] + crpix[1] - 1.0,
)
def get_projection(wcs):
return wcs.wcs.ctype[0][5:]
def get_coordys(wcs):
if "RA" in wcs.wcs.ctype[0]:
return "CEL"
elif "GLON" in wcs.wcs.ctype[0]:
return "GAL"
else:
raise ValueError("Unrecognized WCS coordinate system.")
def wcs_to_axes(w, npix):
"""Generate a sequence of bin edge vectors corresponding to the
axes of a WCS object."""
npix = npix[::-1]
cdelt0 = np.abs(w.wcs.cdelt[0])
x = np.linspace(-(npix[0]) / 2.0, (npix[0]) / 2.0, npix[0] + 1) * cdelt0
cdelt1 = np.abs(w.wcs.cdelt[1])
y = np.linspace(-(npix[1]) / 2.0, (npix[1]) / 2.0, npix[1] + 1) * cdelt1
cdelt2 = np.log10((w.wcs.cdelt[2] + w.wcs.crval[2]) / w.wcs.crval[2])
z = np.linspace(0, npix[2], npix[2] + 1) * cdelt2
z += np.log10(w.wcs.crval[2])
return x, y, z