SNRTrueloveMcKee¶
-
class
gammapy.astro.source.
SNRTrueloveMcKee
(*args, **kwargs)[source]¶ Bases:
gammapy.astro.source.SNR
SNR model according to Truelove & McKee (1999).
Reference: http://adsabs.harvard.edu/abs/1999ApJS..120..299T
Attributes Summary
sedov_taylor_begin
Characteristic time scale when the Sedov-Taylor phase starts. sedov_taylor_end
Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution ends. Methods Summary
luminosity_tev
([t, energy_min])Gamma-ray luminosity above energy_min
at aget
.radius
([t])Outer shell radius at age t. radius_inner
(t[, fraction])Inner radius at age t of the SNR shell. radius_reverse_shock
(t)Reverse shock radius at age t. Attributes Documentation
-
sedov_taylor_begin
¶ Characteristic time scale when the Sedov-Taylor phase starts.
Given by tST≈0.52tch.
-
sedov_taylor_end
¶ Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution ends.
Notes
The end of the Sedov-Taylor phase of the SNR is defined by the condition, that the temperature at the shock drops below T = 10^6 K. The time scale is given by:
tend≈43000\textnormal(m1.66⋅10−24g)5/6(ESN1051erg)1/3(ρISM1.66⋅10−24g/cm3)−1/3
Methods Documentation
-
luminosity_tev
(t=None, energy_min=<Quantity 1. TeV>)¶ Gamma-ray luminosity above
energy_min
at aget
.The luminosity is assumed constant in a given age interval and zero before and after. The assumed spectral index is 2.1.
Reference: http://adsabs.harvard.edu/abs/1994A%26A…287..959D (Formula (7)).
Parameters: t :
Quantity
Time after birth of the SNR.
energy_min :
Quantity
Lower energy limit for the luminosity.
Notes
The gamma-ray luminosity above 1 TeV is given by:
Lγ(≥1TeV)≈1034θ(ESN1051erg)(ρISM1.66⋅10−24g/cm3)\textnormalphs−1
-
radius
(t=None)[source]¶ Outer shell radius at age t.
Parameters: t :
Quantity
Time after birth of the SNR.
Notes
The radius during the free expansion phase is given by:
RSNR(t)=1.12Rch(ttch)2/3The radius during the Sedov-Taylor phase evolves like:
RSNR(t)=[R5/2SNR,ST+(2.026ESNρISM)1/2(t−tST)]2/5Using the characteristic dimensions:
Rch=M1/3ejρ−1/3ISM \textnormaland tch=E−1/2SNM5/6ejρ−1/3ISM
-
radius_inner
(t, fraction=0.0914)¶ Inner radius at age t of the SNR shell.
Parameters: t :
Quantity
Time after birth of the SNR.
-
radius_reverse_shock
(t)[source]¶ Reverse shock radius at age t.
Parameters: t :
Quantity
Time after birth of the SNR.
Notes
Initially the reverse shock co-evolves with the radius of the SNR:
RRS(t)=11.19rSNR(t)After a time tcore≃0.25tch the reverse shock reaches the core and then propagates as:
RRS(t)=[1.49−0.16t−tcoretch−0.46ln(ttcore)]Rchtcht
-