Note

You are not reading the most up to date version of Gammapy documentation.
Access the latest stable version v1.3 or the list of Gammapy releases.

SNRTrueloveMcKee

class gammapy.astro.source.SNRTrueloveMcKee(*args, **kwargs)[source]

Bases: gammapy.astro.source.SNR

SNR model according to Truelove & McKee (1999).

Reference: http://adsabs.harvard.edu/abs/1999ApJS..120..299T

Attributes Summary

sedov_taylor_begin Characteristic time scale when the Sedov-Taylor phase starts.
sedov_taylor_end Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution ends.

Methods Summary

luminosity_tev([t, energy_min]) Gamma-ray luminosity above energy_min at age t.
radius([t]) Outer shell radius at age t.
radius_inner(t[, fraction]) Inner radius at age t of the SNR shell.
radius_reverse_shock(t) Reverse shock radius at age t.

Attributes Documentation

sedov_taylor_begin

Characteristic time scale when the Sedov-Taylor phase starts.

Given by tST0.52tch.

sedov_taylor_end

Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution ends.

Notes

The end of the Sedov-Taylor phase of the SNR is defined by the condition, that the temperature at the shock drops below T = 10^6 K. The time scale is given by:

tend43000\textnormal(m1.661024g)5/6(ESN1051erg)1/3(ρISM1.661024g/cm3)1/3

Methods Documentation

luminosity_tev(t=None, energy_min=<Quantity 1. TeV>)

Gamma-ray luminosity above energy_min at age t.

The luminosity is assumed constant in a given age interval and zero before and after. The assumed spectral index is 2.1.

Reference: http://adsabs.harvard.edu/abs/1994A%26A…287..959D (Formula (7)).

Parameters:

t : Quantity

Time after birth of the SNR.

energy_min : Quantity

Lower energy limit for the luminosity.

Notes

The gamma-ray luminosity above 1 TeV is given by:

Lγ(1TeV)1034θ(ESN1051erg)(ρISM1.661024g/cm3)\textnormalphs1
radius(t=None)[source]

Outer shell radius at age t.

Parameters:

t : Quantity

Time after birth of the SNR.

Notes

The radius during the free expansion phase is given by:

RSNR(t)=1.12Rch(ttch)2/3

The radius during the Sedov-Taylor phase evolves like:

RSNR(t)=[R5/2SNR,ST+(2.026ESNρISM)1/2(ttST)]2/5

Using the characteristic dimensions:

Rch=M1/3ejρ1/3ISM  \textnormaland  tch=E1/2SNM5/6ejρ1/3ISM
radius_inner(t, fraction=0.0914)

Inner radius at age t of the SNR shell.

Parameters:

t : Quantity

Time after birth of the SNR.

radius_reverse_shock(t)[source]

Reverse shock radius at age t.

Parameters:

t : Quantity

Time after birth of the SNR.

Notes

Initially the reverse shock co-evolves with the radius of the SNR:

RRS(t)=11.19rSNR(t)

After a time tcore0.25tch the reverse shock reaches the core and then propagates as:

RRS(t)=[1.490.16ttcoretch0.46ln(ttcore)]Rchtcht