Background2D

class gammapy.irf.Background2D(energy_lo, energy_hi, offset_lo, offset_hi, data, meta=None, interp_kwargs=None)[source]

Bases: object

Background 2D.

Data format specification: BKG_2D

Parameters:

energy_lo, energy_hi : Quantity

Energy binning

offset_lo, offset_hi : Quantity

FOV coordinate offset-axis binning

data : Quantity

Background rate (usually: s^-1 MeV^-1 sr^-1)

Attributes Summary

default_interp_kwargs Default Interpolation kwargs for NDDataArray.

Methods Summary

evaluate(fov_lon, fov_lat, energy_reco[, method]) Evaluate at a given FOV position and energy.
evaluate_integrate(fov_lon, fov_lat, energy_reco) Evaluate at given FOV position and energy, by integrating over the energy range.
from_hdulist(hdulist[, hdu]) Create from HDUList.
from_table(table) Read from Table.
peek()
plot(**kwargs)
read(filename[, hdu]) Read from file.
to_3d() Convert to Background3D.
to_fits([name]) Convert to BinTableHDU.
to_table() Convert to Table.

Attributes Documentation

default_interp_kwargs = {'bounds_error': False, 'fill_value': None}

Default Interpolation kwargs for NDDataArray. Extrapolate.

Methods Documentation

evaluate(fov_lon, fov_lat, energy_reco, method='linear', **kwargs)[source]

Evaluate at a given FOV position and energy. The fov_lon, fov_lat, energy_reco has to have the same shape since this is a set of points on which you want to evaluate

To have the same API than background 3D for the background evaluation, the offset is fov_altaz_lon.

Parameters:

fov_lon, fov_lat : Angle

FOV coordinates expecting in AltAz frame, same shape than energy_reco

energy_reco : Quantity

Reconstructed energy, same dimension than fov_lat and fov_lat

method : str {‘linear’, ‘nearest’}, optional

Interpolation method

kwargs : dict

option for interpolation for RegularGridInterpolator

Returns:

array : Quantity

Interpolated values, axis order is the same as for the NDData array

evaluate_integrate(fov_lon, fov_lat, energy_reco, method='linear')[source]

Evaluate at given FOV position and energy, by integrating over the energy range.

Parameters:

fov_lon, fov_lat : Angle

FOV coordinates expecting in AltAz frame.

energy_reco: `~astropy.units.Quantity`

Reconstructed energy edges.

method : {‘linear’, ‘nearest’}, optional

Interpolation method

Returns:

array : Quantity

Returns 2D array with axes offset

classmethod from_hdulist(hdulist, hdu='BACKGROUND')[source]

Create from HDUList.

classmethod from_table(table)[source]

Read from Table.

peek()[source]
plot(**kwargs)[source]
classmethod read(filename, hdu='BACKGROUND')[source]

Read from file.

to_3d()[source]

Convert to Background3D.

Fill in a radially symmetric way.

to_fits(name='BACKGROUND')[source]

Convert to BinTableHDU.

to_table()[source]

Convert to Table.