Note

You are not reading the most up to date version of Gammapy documentation.
Access the latest stable version v1.3 or the list of Gammapy releases.

SensitivityEstimator

class gammapy.spectrum.SensitivityEstimator(irf, livetime, slope=2.0, alpha=0.2, sigma=5.0, gamma_min=10.0, bkg_sys=0.05)[source]

Bases: object

Estimate differential sensitivity.

Uses a 1D spectral analysis and on / off measurement.

Parameters:

irf : CTAPerf

IRF object

livetime : Quantity

Livetime (object with the units of time), e.g. 5*u.h

slope : float, optional

Index of the spectral shape (Power-law), should be positive (>0)

alpha : float, optional

On/OFF normalisation

sigma : float, optional

Minimum significance

gamma_min : float, optional

Minimum number of gamma-rays

bkg_sys : float, optional

Fraction of Background systematics relative to the number of ON counts

Notes

For the moment, only the differential point-like sensitivity is computed at a fixed offset. This class allows to determine for each reconstructed energy bin the flux associated to the number of gamma-ray events for which the significance is sigma, and being larger than gamma_min and bkg_sys percent larger than the number of background events in the ON region.

Examples

Compute and plot a sensitivity curve for CTA:

from gammapy.irf import CTAPerf
from gammapy.spectrum import SensitivityEstimator

filename = '$GAMMAPY_DATA/cta/perf_prod2/point_like_non_smoothed/South_5h.fits.gz'
irf = CTAPerf.read(filename)
sensitivity_estimator = SensitivityEstimator(irf=irf, livetime='5h')
sensitivity_estimator.run()
print(sensitivity_estimator.results_table)

Further examples in cta_sensitivity.html .

Attributes Summary

results_table Results table (Table).

Methods Summary

run() Run the computation.

Attributes Documentation

results_table

Results table (Table).

Methods Documentation

run()[source]

Run the computation.