Energy

class gammapy.utils.energy.Energy[source]

Bases: astropy.units.quantity.Quantity

Energy quantity scalar or array.

This is a Quantity sub-class that adds convenience methods to handle common tasks for energy bin center arrays, like FITS I/O or generating equal-log-spaced grids of energies.

See Energy handling in Gammapy for further information.

Parameters:

energy : array, scalar, Quantity

Energy

unit : UnitBase, str, optional

The unit of the value specified for the energy. This may be any string that Unit understands, but it is better to give an actual unit object.

dtype : dtype, optional

See Quantity.

copy : bool, optional

See Quantity.

Attributes Summary

T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
cgs Returns a copy of the current Quantity instance with CGS units.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
equivalencies A list of equivalencies that will be applied by default during unit conversions.
flags Information about the memory layout of the array.
flat A 1-D iterator over the Quantity array.
imag The imaginary part of the array.
info Container for meta information like name, description, format.
isscalar True if the value of this quantity is a scalar, or False if it is an array-like object.
itemsize Length of one array element in bytes.
nbins The number of bins.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
range The covered energy range (tuple).
real The real part of the array.
shape Tuple of array dimensions.
si Returns a copy of the current Quantity instance with SI units.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.
unit A UnitBase object representing the unit of this quantity.
value The numerical value of this instance.

Methods Summary

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
decompose([bases]) Generates a new Quantity with the units decomposed.
diagonal([offset, axis1, axis2]) Return specified diagonals.
diff([n, axis])
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
ediff1d([to_end, to_begin])
equal_log_spacing(emin, emax, nbins[, unit, …]) Create Energy with equal log-spacing (Energy).
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
from_fits(hdu[, unit]) Read ENERGIES fits extension (Energy).
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
insert(obj, values[, axis]) Insert values along the given axis before the given indices and return a new Quantity object.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out, keepdims]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
nansum([axis, out, keepdims])
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
to(unit[, equivalencies]) Return a new Quantity object with the specified unit.
to_fits() Write ENERGIES fits extension
to_value([unit, equivalencies]) The numerical value, possibly in a different unit.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.

Attributes Documentation

T

Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[ 1.,  2.],
       [ 3.,  4.]])
>>> x.T
array([[ 1.,  3.],
       [ 2.,  4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([ 1.,  2.,  3.,  4.])
>>> x.T
array([ 1.,  2.,  3.,  4.])
base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True
cgs

Returns a copy of the current Quantity instance with CGS units. The value of the resulting object will be scaled.

ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters:

None

Returns:

c : Python object

Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes):

  • data: A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as self._array_interface_[‘data’][0].
  • shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the shape of the underlying array.
  • strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array.
  • data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).
  • shape_as(obj): Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.c_short).
  • strides_as(obj): Return the strides tuple as an array of some other c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
       [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
data

Python buffer object pointing to the start of the array’s data.

dtype

Data-type of the array’s elements.

Parameters:None
Returns:d : numpy dtype object

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
       [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>
equivalencies

A list of equivalencies that will be applied by default during unit conversions.

flags

Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

  • UPDATEIFCOPY can only be set False.
  • WRITEBACKIFCOPY can only be set False.
  • ALIGNED can only be set True if the data is truly aligned.
  • WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Attributes

C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.
OWNDATA (O) The array owns the memory it uses or borrows it from another object.
WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a writeable array may be subsequently locked while the base array remains writeable. (The opposite is not true, in that a view of a locked array may not be made writeable. However, currently, locking a base object does not lock any views that already reference it, so under that circumstance it is possible to alter the contents of a locked array via a previously created writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError exception.
ALIGNED (A) The data and all elements are aligned appropriately for the hardware.
WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will be updated with the contents of this array.
UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array.
FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED (B) ALIGNED and WRITEABLE.
CARRAY (CA) BEHAVED and C_CONTIGUOUS.
FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
flat

A 1-D iterator over the Quantity array.

This returns a QuantityIterator instance, which behaves the same as the flatiter instance returned by flat, and is similar to, but not a subclass of, Python’s built-in iterator object.

imag

The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0.        ,  0.70710678])
>>> x.imag.dtype
dtype('float64')
info

Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information.

isscalar

True if the value of this quantity is a scalar, or False if it is an array-like object.

Note

This is subtly different from numpy.isscalar in that numpy.isscalar returns False for a zero-dimensional array (e.g. np.array(1)), while this is True for quantities, since quantities cannot represent true numpy scalars.

itemsize

Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16
nbins

The number of bins.

nbytes

Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480
ndim

Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3
range

The covered energy range (tuple).

real

The real part of the array.

See also

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1.        ,  0.70710678])
>>> x.real.dtype
dtype('float64')
shape

Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required.

See also

numpy.reshape
similar function
ndarray.reshape
similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: incompatible shape for a non-contiguous array
si

Returns a copy of the current Quantity instance with SI units. The value of the resulting object will be scaled.

size

Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_), and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30
strides

Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
              [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813
unit

A UnitBase object representing the unit of this quantity.

value

The numerical value of this instance.

See also

to_value
Get the numerical value in a given unit.

Methods Documentation

all(axis=None, out=None, keepdims=False)

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

numpy.all
equivalent function
any(axis=None, out=None, keepdims=False)

Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

numpy.any
equivalent function
argmax(axis=None, out=None)

Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

numpy.argmax
equivalent function
argmin(axis=None, out=None)

Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

numpy.argmin
equivalent function
argpartition(kth, axis=-1, kind='introselect', order=None)

Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

numpy.argpartition
equivalent function
argsort(axis=-1, kind='quicksort', order=None)

Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

numpy.argsort
equivalent function
astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.

Parameters:

dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible. Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

  • ‘no’ means the data types should not be cast at all.
  • ‘equiv’ means only byte-order changes are allowed.
  • ‘safe’ means only casts which can preserve values are allowed.
  • ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
  • ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the dtype, order, and subok requirements are satisfied, the input array is returned instead of a copy.

Returns:

arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied (see description for copy input parameter), arr_t is a new array of the same shape as the input array, with dtype, order given by dtype, order.

Raises:

ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. ,  2. ,  2.5])
>>> x.astype(int)
array([1, 2, 2])
byteswap(inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place.

Parameters:

inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns:

out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([  256,     1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
      dtype='|S3')
choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

numpy.choose
equivalent function
clip(min=None, max=None, out=None)

Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also

numpy.clip
equivalent function
compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

numpy.compress
equivalent function
conj()

Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

numpy.conjugate
equivalent function
conjugate()

Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

numpy.conjugate
equivalent function
copy(order='C')

Return a copy of the array.

Parameters:

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible. (Note that this function and numpy.copy() are very similar, but have different default values for their order= arguments.)

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
       [0, 0, 0]])
>>> y
array([[1, 2, 3],
       [4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

numpy.cumprod
equivalent function
cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

numpy.cumsum
equivalent function
decompose(bases=[])

Generates a new Quantity with the units decomposed. Decomposed units have only irreducible units in them (see astropy.units.UnitBase.decompose).

Parameters:

bases : sequence of UnitBase, optional

The bases to decompose into. When not provided, decomposes down to any irreducible units. When provided, the decomposed result will only contain the given units. This will raises a UnitsError if it’s not possible to do so.

Returns:

newq : Quantity

A new object equal to this quantity with units decomposed.

diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also

numpy.diagonal
equivalent function
diff(n=1, axis=-1)
dot(b, out=None)

Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

numpy.dot
equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2.,  2.],
       [ 2.,  2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[ 8.,  8.],
       [ 8.,  8.]])
dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters:

file : str

A string naming the dump file.

dumps()

Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters:None
ediff1d(to_end=None, to_begin=None)
classmethod equal_log_spacing(emin, emax, nbins, unit=None, per_decade=False)[source]

Create Energy with equal log-spacing (Energy).

if no unit is given, it will be taken from emax

Parameters:

emin : Quantity, float

Lowest energy bin

emax : Quantity, float

Highest energy bin

nbins : int

Number of bins

unit : UnitBase, str

Energy unit

per_decade : bool

Whether nbins is per decade.

fill(value)

Fill the array with a scalar value.

Parameters:

value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1.,  1.])
flatten(order='C')

Return a copy of the array collapsed into one dimension.

Parameters:

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns:

y : ndarray

A copy of the input array, flattened to one dimension.

See also

ravel
Return a flattened array.
flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
classmethod from_fits(hdu, unit=None)[source]

Read ENERGIES fits extension (Energy).

Parameters:

hdu: `~astropy.io.fits.BinTableHDU`

ENERGIES extensions.

unit : UnitBase, str, None

Energy unit

getfield(dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters:

dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j,  0.+0.j],
       [ 0.+0.j,  2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1.,  0.],
       [ 0.,  2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[ 1.,  0.],
   [ 0.,  4.]])
insert(obj, values, axis=None)

Insert values along the given axis before the given indices and return a new Quantity object.

This is a thin wrapper around the numpy.insert function.

Parameters:

obj : int, slice or sequence of ints

Object that defines the index or indices before which values is inserted.

values : array-like

Values to insert. If the type of values is different from that of quantity, values is converted to the matching type. values should be shaped so that it can be broadcast appropriately The unit of values must be consistent with this quantity.

axis : int, optional

Axis along which to insert values. If axis is None then the quantity array is flattened before insertion.

Returns:

out : Quantity

A copy of quantity with values inserted. Note that the insertion does not occur in-place: a new quantity array is returned.

Examples

>>> import astropy.units as u
>>> q = [1, 2] * u.m
>>> q.insert(0, 50 * u.cm)
<Quantity [ 0.5,  1.,  2.] m>
>>> q = [[1, 2], [3, 4]] * u.m
>>> q.insert(1, [10, 20] * u.m, axis=0)
<Quantity [[  1.,  2.],
           [ 10., 20.],
           [  3.,  4.]] m>
>>> q.insert(1, 10 * u.m, axis=1)
<Quantity [[  1., 10.,  2.],
           [  3., 10.,  4.]] m>
item(*args)

Copy an element of an array to a standard Python scalar and return it.

Parameters:

*args : Arguments (variable number and type)

  • none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned.
  • int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.
  • tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.
Returns:

z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
       [2, 8, 3],
       [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
itemset(*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is equivalent to but faster than a[args] = item. The item should be a scalar value and args must select a single item in the array a.

Parameters:

*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last argument is the value to be set and must be a scalar, the first argument specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular location in an ndarray, if you must do this. However, generally this is discouraged: among other problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
       [2, 8, 3],
       [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
       [2, 0, 3],
       [8, 5, 9]])
max(axis=None, out=None, keepdims=False)

Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

numpy.amax
equivalent function
mean(axis=None, dtype=None, out=None, keepdims=False)

Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

numpy.mean
equivalent function
min(axis=None, out=None, keepdims=False)

Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

numpy.amin
equivalent function
nansum(axis=None, out=None, keepdims=False)
newbyteorder(new_order='S')

Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters:

new_order : string, optional

Byte order to force; a value from the byte order specifications below. new_order codes can be any of:

  • ‘S’ - swap dtype from current to opposite endian
  • {‘<’, ‘L’} - little endian
  • {‘>’, ‘B’} - big endian
  • {‘=’, ‘N’} - native order
  • {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive check on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns:

new_arr : array

New array object with the dtype reflecting given change to the byte order.

nonzero()

Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

numpy.nonzero
equivalent function
partition(kth, axis=-1, kind='introselect', order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

New in version 1.8.0.

Parameters:

kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need to be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See also

numpy.partition
Return a parititioned copy of an array.
argpartition
Indirect partition.
sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])
>>> a.partition((1, 3))
array([1, 2, 3, 4])
prod(axis=None, dtype=None, out=None, keepdims=False)

Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

numpy.prod
equivalent function
ptp(axis=None, out=None, keepdims=False)

Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

numpy.ptp
equivalent function
put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

numpy.put
equivalent function
ravel([order])

Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

numpy.ravel
equivalent function
ndarray.flat
a flat iterator on the array.
repeat(repeats, axis=None)

Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

numpy.repeat
equivalent function
reshape(shape, order='C')

Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.reshape((10, 11)).

resize(new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters:

new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns:

None

Raises:

ValueError

If a does not own its own data or references or views to it exist, and the data memory must be changed. PyPy only: will always raise if the data memory must be changed, since there is no reliable way to determine if references or views to it exist.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
       [1]])
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
       [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
       [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

numpy.around
equivalent function
searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

numpy.searchsorted
equivalent function
setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters:

val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns:

None

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
       [3, 3, 3],
       [3, 3, 3]])
>>> x
array([[  1.00000000e+000,   1.48219694e-323,   1.48219694e-323],
       [  1.48219694e-323,   1.00000000e+000,   1.48219694e-323],
       [  1.48219694e-323,   1.48219694e-323,   1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters:

write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],
       [2, 0, 0],
       [8, 5, 9]])
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITEABLE : False
  ALIGNED : False
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True
sort(axis=-1, kind='quicksort', order=None)

Sort an array, in-place.

Parameters:

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See also

numpy.sort
Return a sorted copy of an array.
argsort
Indirect sort.
lexsort
Indirect stable sort on multiple keys.
searchsorted
Find elements in sorted array.
partition
Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
       [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
       [1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
      dtype=[('x', '|S1'), ('y', '<i4')])
squeeze(axis=None)

Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

numpy.squeeze
equivalent function
std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

numpy.std
equivalent function
sum(axis=None, dtype=None, out=None, keepdims=False)

Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

numpy.sum
equivalent function
swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

numpy.swapaxes
equivalent function
take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

numpy.take
equivalent function
to(unit, equivalencies=[])

Return a new Quantity object with the specified unit.

Parameters:

unit : UnitBase instance, str

An object that represents the unit to convert to. Must be an UnitBase object or a string parseable by the units package.

equivalencies : list of equivalence pairs, optional

A list of equivalence pairs to try if the units are not directly convertible. See Equivalencies. If not provided or [], class default equivalencies will be used (none for Quantity, but may be set for subclasses) If None, no equivalencies will be applied at all, not even any set globally or within a context.

See also

to_value
get the numerical value in a given unit.
to_fits()[source]

Write ENERGIES fits extension

Returns:

hdu: BinTableHDU

ENERGIES fits extension

to_value(unit=None, equivalencies=[])

The numerical value, possibly in a different unit.

Parameters:

unit : UnitBase instance or str, optional

The unit in which the value should be given. If not given or None, use the current unit.

equivalencies : list of equivalence pairs, optional

A list of equivalence pairs to try if the units are not directly convertible (see Equivalencies). If not provided or [], class default equivalencies will be used (none for Quantity, but may be set for subclasses). If None, no equivalencies will be applied at all, not even any set globally or within a context.

Returns:

value : ndarray or scalar

The value in the units specified. For arrays, this will be a view of the data if no unit conversion was necessary.

See also

to
Get a new instance in a different unit.
tobytes(order='C')

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters:

order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

Returns:

s : bytes

Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'
tofile(fid, sep="", format="%s")

Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile().

Parameters:

fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written, equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-like objects that do not support fileno() (e.g., BytesIO).

tolist()

Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible Python type.

Parameters:

none

Returns:

y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]
tostring(order='C')

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters:

order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

Returns:

s : bytes

Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'
trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

numpy.trace
equivalent function
transpose(*axes)

Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters:

axes : None, tuple of ints, or n ints

  • None or no argument: reverses the order of the axes.
  • tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.
  • n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form)
Returns:

out : ndarray

View of a, with axes suitably permuted.

See also

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a.transpose()
array([[1, 3],
       [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
       [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
       [2, 4]])
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

numpy.var
equivalent function
view(dtype=None, type=None)

New view of array with the same data.

Parameters:

dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None, results in the view having the same data-type as a. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
       [3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2.,  3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
       [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
       [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])