ScaledRegularGridInterpolator¶
-
class
gammapy.utils.interpolation.ScaledRegularGridInterpolator(points, values, values_scale='lin', extrapolate=True, **kwargs)[source]¶ Bases:
objectThin wrapper around
scipy.interpolate.RegularGridInterpolator.The values are scaled before the interpolation and back-scaled after the interpolation.
Parameters: points : tuple
Tuple of points passed to
RegularGridInterpolator.values :
Values passed to
RegularGridInterpolator.values_scale : {‘lin’, ‘log’, ‘sqrt’}
Interpolation scaling applied to values. If the values vary over many magnitudes a ‘log’ scaling is recommended.
**kwargs : dict
Keyword arguments passed to
RegularGridInterpolator.Methods Summary
__call__(points[, method, clip])Interpolate data points. Methods Documentation
-
__call__(points, method='linear', clip=True, **kwargs)[source]¶ Interpolate data points.
Parameters: points : tuple of
np.ndarrayTuple of coordinate arrays of the form (x_1, x_2, x_3, …). Arrays are broadcasted internally.
method : {“linear”, “nearest”}
Linear or nearest neighbour interpolation.
clip : bool
Clip values at zero after interpolation.
-