FluxPointFit¶
-
class
gammapy.spectrum.
FluxPointFit
(model, data, stat='chi2')[source]¶ Bases:
gammapy.utils.fitting.Fit
Fit a set of flux points with a parametric model.
Parameters: model :
SpectralModel
Spectral model
data :
FluxPoints
Flux points.
Examples
Load flux points from file and fit with a power-law model:
from astropy import units as u from gammapy.spectrum import FluxPoints, FluxPointFit from gammapy.spectrum.models import PowerLaw filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/diff_flux_points.fits' flux_points = FluxPoints.read(filename) model = PowerLaw() fit = FluxPointFit(model, flux_points) result = fit.run() print(result) print(result.model)
Attributes Summary
stat
Methods Summary
confidence
(parameter[, backend, sigma])Estimate confidence interval. covariance
([backend])Estimate the covariance matrix. likelihood_contour
()Compute likelihood contour. likelihood_profile
(parameter[, values, …])Compute likelihood profile. minos_contour
(x, y[, numpoints, sigma])Compute MINOS contour. minos_profile
()Compute MINOS profile. optimize
([backend])Run the optimization. run
([optimize_opts, covariance_opts])Run all fitting steps. total_stat
(parameters)Total likelihood given the current model parameters Attributes Documentation
-
stat
¶
Methods Documentation
-
confidence
(parameter, backend='minuit', sigma=1, **kwargs)¶ Estimate confidence interval.
Extra
kwargs
are passed to the backend. E.g.iminuit.Minuit.minos
supports amaxcall
option.Parameters: backend : str
Which backend to use (see
gammapy.utils.fitting.registry
)parameter :
Parameter
Parameter of interest
sigma : float
Number of standard deviations for the confidence level
Returns: result : dict
Dictionary with keys “errp”, ‘errn”, “success” and “nfev”.
-
covariance
(backend='minuit')¶ Estimate the covariance matrix.
Assumes that the model parameters are already optimised.
Parameters: backend : str
Which backend to use (see
gammapy.utils.fitting.registry
)Returns: result :
CovarianceResult
Results
-
likelihood_contour
()¶ Compute likelihood contour.
The method used is to vary two parameters, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_contour
Parameters: TODO Returns: TODO
-
likelihood_profile
(parameter, values=None, bounds=2, nvalues=11)¶ Compute likelihood profile.
The method used is to vary one parameter, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_profile
.Parameters: parameter :
Parameter
Parameter of interest
values :
Quantity
(optional)Parameter values to evaluate the likelihood for.
bounds : int or tuple of float
When an
int
is passed the bounds are computed frombounds * sigma
from the best fit value of the parameter, wheresigma
corresponds to the one sigma error on the parameter. If a tuple of floats is given those are taken as the min and max values andnvalues
are linearly spaced between those.nvalues : int
Number of parameter grid points to use.
Returns: results : dict
Dictionary with keys “values” and “likelihood”.
-
minos_contour
(x, y, numpoints=10, sigma=1.0)¶ Compute MINOS contour.
Calls
iminuit.Minuit.mncontour
.This is a contouring algorithm for a 2D function which is not simply the likelihood function. That 2D function is given at each point
(par_1, par_2)
by re-optimising all other free parameters, and taking the likelihood at that point.Very compute-intensive and slow.
Parameters: x, y :
Parameter
Parameters of interest
numpoints : int
Number of contour points
sigma : float
Number of standard deviations for the confidence level
Returns: result : dict
Dictionary with keys “x”, “y” (Numpy arrays with contour points) and a boolean flag “success”. The result objects from
mncontour
are in the additional keys “x_info” and “y_info”.
-
minos_profile
()¶ Compute MINOS profile.
The method used is to vary one parameter, then re-optimise all other free parameters and to take the likelihood at that point.
See also:
Fit.likelihood_profile
Calls
iminuit.Minuit.mnprofile
-
optimize
(backend='minuit', **kwargs)¶ Run the optimization.
Parameters: backend : str
Which backend to use (see
gammapy.utils.fitting.registry
)**kwargs : dict
Keyword arguments passed to the optimizer. For the
"minuit"
backend see https://iminuit.readthedocs.io/en/latest/api.html#iminuit.Minuit for a detailed description of the available options. For the"sherpa"
backend you can from the optionsmethod = {"simplex", "levmar", "moncar", "gridsearch"}
Those methods are described and compared in detail on http://cxc.cfa.harvard.edu/sherpa/methods/index.html. The available options of the optimization methods are described on the following pages in detail:Returns: fit_result :
FitResult
Results
-
run
(optimize_opts=None, covariance_opts=None)¶ Run all fitting steps.
Parameters: optimize_opts : dict
Options passed to
Fit.optimize
.covariance_opts : dict
Options passed to
Fit.covariance
.Returns: fit_result :
FitResult
Results
-