FluxPoints

class gammapy.spectrum.FluxPoints(table)[source]

Bases: object

Flux points container.

The supported formats are described here: SED

In summary, the following formats and minimum required columns are:

  • Format dnde: columns e_ref and dnde
  • Format e2dnde: columns e_ref, e2dnde
  • Format flux: columns e_min, e_max, flux
  • Format eflux: columns e_min, e_max, eflux
Parameters:

table : Table

Table with flux point data

Examples

The FluxPoints object is most easily created by reading a file with flux points given in one of the formats documented above:

from gammapy.spectrum import FluxPoints
filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/flux_points.fits'
flux_points = FluxPoints.read(filename)
flux_points.plot()

An instance of FluxPoints can also be created by passing an instance of astropy.table.Table, which contains the required columns, such as 'e_ref' and 'dnde'. The corresponding sed_type has to be defined in the meta data of the table:

from astropy import units as u
from astropy.table import Table
from gammapy.spectrum import FluxPoints
from gammapy.spectrum.models import PowerLaw

table = Table()
pwl = PowerLaw()
e_ref = np.logspace(0, 2, 7) * u.TeV
table['e_ref'] = e_ref
table['dnde'] = pwl(e_ref)
table.meta['SED_TYPE'] = 'dnde'

flux_points = FluxPoints(table)
flux_points.plot()

If you have flux points in a different data format, the format can be changed by renaming the table columns and adding meta data:

from astropy import units as u
from astropy.table import Table
from gammapy.spectrum import FluxPoints

table = Table.read('$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/flux_points_ctb_37b.txt',
                   format='ascii.csv', delimiter=' ', comment='#')
table.meta['SED_TYPE'] = 'dnde'
table.rename_column('Differential_Flux', 'dnde')
table['dnde'].unit = 'cm-2 s-1 TeV-1'

table.rename_column('lower_error', 'dnde_errn')
table['dnde_errn'].unit = 'cm-2 s-1 TeV-1'

table.rename_column('upper_error', 'dnde_errp')
table['dnde_errp'].unit = 'cm-2 s-1 TeV-1'

table.rename_column('E', 'e_ref')
table['e_ref'].unit = 'TeV'

flux_points = FluxPoints(table)
flux_points.plot()

Attributes

table (Table) Table with flux point data

Attributes Summary

e_edges Edges of the energy bin.
e_max Upper bound of energy bin.
e_min Lower bound of energy bin.
e_ref Reference energy.
is_ul
sed_type SED type (str).
table_formatted Return formatted version of the flux points table.

Methods Summary

drop_ul() Drop upper limit flux points.
plot([ax, energy_unit, flux_unit, energy_power]) Plot flux points.
plot_likelihood([ax, energy_unit, add_cbar, …]) Plot likelihood SED profiles as a density plot..
read(filename, **kwargs) Read flux points.
stack(flux_points) Create flux points by stacking list of flux points.
to_sed_type(sed_type[, method, model, …]) Convert to a different SED type (return new FluxPoints).
write(filename, **kwargs) Write flux points.

Attributes Documentation

e_edges

Edges of the energy bin.

Returns:

e_edges : Quantity

Energy edges.

e_max

Upper bound of energy bin.

Defined by e_max column in table.

Returns:

e_max : Quantity

Upper bound of energy bin.

e_min

Lower bound of energy bin.

Defined by e_min column in FluxPoints.table.

Returns:

e_min : Quantity

Lower bound of energy bin.

e_ref

Reference energy.

Defined by e_ref column in FluxPoints.table or computed as log center, if e_min and e_max columns are present in FluxPoints.table.

Returns:

e_ref : Quantity

Reference energy.

is_ul
sed_type

SED type (str).

One of: {‘dnde’, ‘e2dnde’, ‘flux’, ‘eflux’}

table_formatted

Return formatted version of the flux points table. Used for pretty printing

Methods Documentation

drop_ul()[source]

Drop upper limit flux points.

Returns:

flux_points : FluxPoints

Flux points with upper limit points removed.

Examples

>>> from gammapy.spectrum import FluxPoints
>>> filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/flux_points.fits'
>>> flux_points = FluxPoints.read(filename)
>>> print(flux_points)
FluxPoints(sed_type="flux", n_points=24)
>>> print(flux_points.drop_ul())
FluxPoints(sed_type="flux", n_points=19)
plot(ax=None, energy_unit='TeV', flux_unit=None, energy_power=0, **kwargs)[source]

Plot flux points.

Parameters:

ax : Axes

Axis object to plot on.

energy_unit : str, Unit, optional

Unit of the energy axis

flux_unit : str, Unit, optional

Unit of the flux axis

energy_power : int

Power of energy to multiply y axis with

kwargs : dict

Keyword arguments passed to matplotlib.pyplot.errorbar()

Returns:

ax : Axes

Axis object

plot_likelihood(ax=None, energy_unit='TeV', add_cbar=True, y_values=None, y_unit=None, **kwargs)[source]

Plot likelihood SED profiles as a density plot..

Parameters:

ax : Axes

Axis object to plot on.

energy_unit : str, Unit, optional

Unit of the energy axis

y_values : astropy.units.Quantity

Array of y-values to use for the likelihood profile evaluation.

y_unit : str or astropy.units.Unit

Unit to use for the y-axis.

add_cbar : bool

Whether to add a colorbar to the plot.

kwargs : dict

Keyword arguments passed to matplotlib.pyplot.pcolormesh()

Returns:

ax : Axes

Axis object

classmethod read(filename, **kwargs)[source]

Read flux points.

Parameters:

filename : str

Filename

kwargs : dict

Keyword arguments passed to astropy.table.Table.read.

classmethod stack(flux_points)[source]

Create flux points by stacking list of flux points.

The first FluxPoints object in the list is taken as a reference to infer column names and units for the stacked object.

Parameters:

flux_points : list of FluxPoints

List of flux points to stack.

Returns:

flux_points : FluxPoints

Flux points without upper limit points.

to_sed_type(sed_type, method='log_center', model=None, pwl_approx=False)[source]

Convert to a different SED type (return new FluxPoints).

See: http://adsabs.harvard.edu/abs/1995NIMPA.355..541L for details on the 'lafferty' method.

Parameters:

sed_type : {‘dnde’}

SED type to convert to.

model : SpectralModel

Spectral model assumption. Note that the value of the amplitude parameter does not matter. Still it is recommended to use something with the right scale and units. E.g. amplitude = 1e-12 * u.Unit('cm-2 s-1 TeV-1')

method : {‘lafferty’, ‘log_center’, ‘table’}

Flux points e_ref estimation method:

  • 'laferty' Lafferty & Wyatt model-based e_ref
  • 'log_center' log bin center e_ref
  • 'table' using column ‘e_ref’ from input flux_points

pwl_approx : bool

Use local power law appoximation at e_ref to compute differential flux from the integral flux. This method is used by the Fermi-LAT catalogs.

Returns:

flux_points : FluxPoints

Flux points including differential quantity columns dnde and dnde_err (optional), dnde_ul (optional).

Examples

>>> from gammapy.spectrum import FluxPoints
>>> from gammapy.spectrum.models import PowerLaw
>>> filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/flux_points.fits'
>>> flux_points = FluxPoints.read(filename)
>>> model = PowerLaw(index=2.2)
>>> flux_points_dnde = flux_points.to_sed_type('dnde', model=model)
write(filename, **kwargs)[source]

Write flux points.

Parameters:

filename : str

Filename

kwargs : dict

Keyword arguments passed to astropy.table.Table.write.