3D detailed analysis#

Perform detailed 3D stacked and joint analysis.

This tutorial does a 3D map based analsis on the galactic center, using simulated observations from the CTA-1DC. We will use the high level interface for the data reduction, and then do a detailed modelling. This will be done in two different ways:

  • stacking all the maps together and fitting the stacked maps

  • handling all the observations separately and doing a joint fitting on all the maps

from pathlib import Path
import numpy as np
from scipy.stats import norm
import astropy.units as u
from regions import CircleSkyRegion

# %matplotlib inline
import matplotlib.pyplot as plt
from IPython.display import display
from gammapy.analysis import Analysis, AnalysisConfig
from gammapy.estimators import ExcessMapEstimator
from gammapy.modeling import Fit
from gammapy.modeling.models import (
    ExpCutoffPowerLawSpectralModel,
    FoVBackgroundModel,
    Models,
    PointSpatialModel,
    SkyModel,
)

Check setup#

from gammapy.utils.check import check_tutorials_setup

check_tutorials_setup()
System:

        python_executable      : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/bin/python
        python_version         : 3.9.16
        machine                : x86_64
        system                 : Linux


Gammapy package:

        version                : 1.0.1
        path                   : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy


Other packages:

        numpy                  : 1.24.2
        scipy                  : 1.10.1
        astropy                : 5.2.1
        regions                : 0.7
        click                  : 8.1.3
        yaml                   : 6.0
        IPython                : 8.11.0
        jupyterlab             : not installed
        matplotlib             : 3.7.1
        pandas                 : not installed
        healpy                 : 1.16.2
        iminuit                : 2.21.0
        sherpa                 : 4.15.0
        naima                  : 0.10.0
        emcee                  : 3.1.4
        corner                 : 2.2.1


Gammapy environment variables:

        GAMMAPY_DATA           : /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.0.1

Analysis configuration#

In this section we select observations and define the analysis geometries, irrespective of joint/stacked analysis. For configuration of the analysis, we will programmatically build a config file from scratch.

config = AnalysisConfig()
# The config file is now empty, with only a few defaults specified.
print(config)

# Selecting the observations
config.observations.datastore = "$GAMMAPY_DATA/cta-1dc/index/gps/"
config.observations.obs_ids = [110380, 111140, 111159]

# Defining a reference geometry for the reduced datasets

config.datasets.type = "3d"  # Analysis type is 3D

config.datasets.geom.wcs.skydir = {
    "lon": "0 deg",
    "lat": "0 deg",
    "frame": "galactic",
}  # The WCS geometry - centered on the galactic center
config.datasets.geom.wcs.width = {"width": "10 deg", "height": "8 deg"}
config.datasets.geom.wcs.binsize = "0.02 deg"

# Cutout size (for the run-wise event selection)
config.datasets.geom.selection.offset_max = 3.5 * u.deg
config.datasets.safe_mask.methods = ["aeff-default", "offset-max"]

# We now fix the energy axis for the counts map - (the reconstructed energy binning)
config.datasets.geom.axes.energy.min = "0.1 TeV"
config.datasets.geom.axes.energy.max = "10 TeV"
config.datasets.geom.axes.energy.nbins = 10

# We now fix the energy axis for the IRF maps (exposure, etc) - (the true energy binning)
config.datasets.geom.axes.energy_true.min = "0.08 TeV"
config.datasets.geom.axes.energy_true.max = "12 TeV"
config.datasets.geom.axes.energy_true.nbins = 14

print(config)
AnalysisConfig

    general:
        log: {level: info, filename: null, filemode: null, format: null, datefmt: null}
        outdir: .
        n_jobs: 1
        datasets_file: null
        models_file: null
    observations:
        datastore: $GAMMAPY_DATA/hess-dl3-dr1
        obs_ids: []
        obs_file: null
        obs_cone: {frame: null, lon: null, lat: null, radius: null}
        obs_time: {start: null, stop: null}
        required_irf: [aeff, edisp, psf, bkg]
    datasets:
        type: 1d
        stack: true
        geom:
            wcs:
                skydir: {frame: null, lon: null, lat: null}
                binsize: 0.02 deg
                width: {width: 5.0 deg, height: 5.0 deg}
                binsize_irf: 0.2 deg
            selection: {offset_max: 2.5 deg}
            axes:
                energy: {min: 1.0 TeV, max: 10.0 TeV, nbins: 5}
                energy_true: {min: 0.5 TeV, max: 20.0 TeV, nbins: 16}
        map_selection: [counts, exposure, background, psf, edisp]
        background:
            method: null
            exclusion: null
            parameters: {}
        safe_mask:
            methods: [aeff-default]
            parameters: {}
        on_region: {frame: null, lon: null, lat: null, radius: null}
        containment_correction: true
    fit:
        fit_range: {min: null, max: null}
    flux_points:
        energy: {min: null, max: null, nbins: null}
        source: source
        parameters: {selection_optional: all}
    excess_map:
        correlation_radius: 0.1 deg
        parameters: {}
        energy_edges: {min: null, max: null, nbins: null}
    light_curve:
        time_intervals: {start: null, stop: null}
        energy_edges: {min: null, max: null, nbins: null}
        source: source
        parameters: {selection_optional: all}

AnalysisConfig

    general:
        log: {level: info, filename: null, filemode: null, format: null, datefmt: null}
        outdir: .
        n_jobs: 1
        datasets_file: null
        models_file: null
    observations:
        datastore: $GAMMAPY_DATA/cta-1dc/index/gps
        obs_ids: [110380, 111140, 111159]
        obs_file: null
        obs_cone: {frame: null, lon: null, lat: null, radius: null}
        obs_time: {start: null, stop: null}
        required_irf: [aeff, edisp, psf, bkg]
    datasets:
        type: 3d
        stack: true
        geom:
            wcs:
                skydir: {frame: galactic, lon: 0.0 deg, lat: 0.0 deg}
                binsize: 0.02 deg
                width: {width: 10.0 deg, height: 8.0 deg}
                binsize_irf: 0.2 deg
            selection: {offset_max: 3.5 deg}
            axes:
                energy: {min: 0.1 TeV, max: 10.0 TeV, nbins: 10}
                energy_true: {min: 0.08 TeV, max: 12.0 TeV, nbins: 14}
        map_selection: [counts, exposure, background, psf, edisp]
        background:
            method: null
            exclusion: null
            parameters: {}
        safe_mask:
            methods: [aeff-default, offset-max]
            parameters: {}
        on_region: {frame: null, lon: null, lat: null, radius: null}
        containment_correction: true
    fit:
        fit_range: {min: null, max: null}
    flux_points:
        energy: {min: null, max: null, nbins: null}
        source: source
        parameters: {selection_optional: all}
    excess_map:
        correlation_radius: 0.1 deg
        parameters: {}
        energy_edges: {min: null, max: null, nbins: null}
    light_curve:
        time_intervals: {start: null, stop: null}
        energy_edges: {min: null, max: null, nbins: null}
        source: source
        parameters: {selection_optional: all}

Configuration for stacked and joint analysis#

This is done just by specifying the flag on config.datasets.stack. Since the internal machinery will work differently for the two cases, we will write it as two config files and save it to disc in YAML format for future reference.

config_stack = config.copy(deep=True)
config_stack.datasets.stack = True

config_joint = config.copy(deep=True)
config_joint.datasets.stack = False

# To prevent unnecessary cluttering, we write it in a separate folder.
path = Path("analysis_3d")
path.mkdir(exist_ok=True)
config_joint.write(path=path / "config_joint.yaml", overwrite=True)
config_stack.write(path=path / "config_stack.yaml", overwrite=True)

Stacked analysis#

Data reduction#

We first show the steps for the stacked analysis and then repeat the same for the joint analysis later

# Reading yaml file:
config_stacked = AnalysisConfig.read(path=path / "config_stack.yaml")

analysis_stacked = Analysis(config_stacked)

select observations:

/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)

We have one final dataset, which we can print and explore

MapDataset
----------

  Name                            : stacked

  Total counts                    : 121241
  Total background counts         : 108043.52
  Total excess counts             : 13197.48

  Predicted counts                : 108043.52
  Predicted background counts     : 108043.52
  Predicted excess counts         : nan

  Exposure min                    : 6.28e+07 m2 s
  Exposure max                    : 1.90e+10 m2 s

  Number of total bins            : 2000000
  Number of fit bins              : 1411180

  Fit statistic type              : cash
  Fit statistic value (-2 log(L)) : nan

  Number of models                : 0
  Number of parameters            : 0
  Number of free parameters       : 0

To plot a smooth counts map

dataset_stacked.counts.smooth(0.02 * u.deg).plot_interactive(add_cbar=True)
analysis 3d
interactive(children=(SelectionSlider(continuous_update=False, description='Select energy:', layout=Layout(width='50%'), options=('100 GeV - 158 GeV', '158 GeV - 251 GeV', '251 GeV - 398 GeV', '398 GeV - 631 GeV', '631 GeV - 1.00 TeV', '1.00 TeV - 1.58 TeV', '1.58 TeV - 2.51 TeV', '2.51 TeV - 3.98 TeV', '3.98 TeV - 6.31 TeV', '6.31 TeV - 10.00 TeV'), style=SliderStyle(description_width='initial'), value='100 GeV - 158 GeV'), RadioButtons(description='Select stretch:', index=1, options=('linear', 'sqrt', 'log'), style=DescriptionStyle(description_width='initial'), value='sqrt'), Output()), _dom_classes=('widget-interact',))

And the background map

analysis 3d
interactive(children=(SelectionSlider(continuous_update=False, description='Select energy:', layout=Layout(width='50%'), options=('100 GeV - 158 GeV', '158 GeV - 251 GeV', '251 GeV - 398 GeV', '398 GeV - 631 GeV', '631 GeV - 1.00 TeV', '1.00 TeV - 1.58 TeV', '1.58 TeV - 2.51 TeV', '2.51 TeV - 3.98 TeV', '3.98 TeV - 6.31 TeV', '6.31 TeV - 10.00 TeV'), style=SliderStyle(description_width='initial'), value='100 GeV - 158 GeV'), RadioButtons(description='Select stretch:', index=1, options=('linear', 'sqrt', 'log'), style=DescriptionStyle(description_width='initial'), value='sqrt'), Output()), _dom_classes=('widget-interact',))

We can quickly check the PSF

Exposure, Containment radius at 1 TeV, Containment radius at center of map, PSF at center of map

And the energy dispersion in the center of the map

analysis 3d

You can also get an excess image with a few lines of code:

excess = dataset_stacked.excess.sum_over_axes()
excess.smooth("0.06 deg").plot(stretch="sqrt", add_cbar=True)
analysis 3d
<WCSAxes: >

Modeling and fitting#

Now comes the interesting part of the analysis - choosing appropriate models for our source and fitting them.

We choose a point source model with an exponential cutoff power-law spectrum.

To perform the fit on a restricted energy range, we can create a specific mask. On the dataset, the mask_fit is a Map sharing the same geometry as the MapDataset and containing boolean data.

To create a mask to limit the fit within a restricted energy range, one can rely on the energy_mask() method.

For more details on masks and the techniques to create them in gammapy, please checkou the dedicated Mask maps tutorial.

dataset_stacked.mask_fit = dataset_stacked.counts.geom.energy_mask(
    energy_min=0.3 * u.TeV, energy_max=None
)

spatial_model = PointSpatialModel(
    lon_0="-0.05 deg", lat_0="-0.05 deg", frame="galactic"
)
spectral_model = ExpCutoffPowerLawSpectralModel(
    index=2.3,
    amplitude=2.8e-12 * u.Unit("cm-2 s-1 TeV-1"),
    reference=1.0 * u.TeV,
    lambda_=0.02 / u.TeV,
)

model = SkyModel(
    spatial_model=spatial_model,
    spectral_model=spectral_model,
    name="gc-source",
)

bkg_model = FoVBackgroundModel(dataset_name="stacked")
bkg_model.spectral_model.norm.value = 1.3

models_stacked = Models([model, bkg_model])

dataset_stacked.models = models_stacked
fit = Fit(optimize_opts={"print_level": 1})
result = fit.run(datasets=[dataset_stacked])

Fit quality assessment and model residuals for a MapDataset#

We can access the results dictionary to see if the fit converged:

print(result)
OptimizeResult

        backend    : minuit
        method     : migrad
        success    : True
        message    : Optimization terminated successfully.
        nfev       : 185
        total stat : 180458.06

CovarianceResult

        backend    : minuit
        method     : hesse
        success    : True
        message    : Hesse terminated successfully.

Check best-fit parameters and error estimates:

   model      type      name      value    ...    max    frozen is_norm link
----------- -------- --------- ----------- ... --------- ------ ------- ----
  gc-source spectral     index  2.4144e+00 ...       nan  False   False
  gc-source spectral amplitude  2.6629e-12 ...       nan  False    True
  gc-source spectral reference  1.0000e+00 ...       nan   True   False
  gc-source spectral   lambda_ -1.3418e-02 ...       nan  False   False
  gc-source spectral     alpha  1.0000e+00 ...       nan   True   False
  gc-source  spatial     lon_0 -4.8063e-02 ...       nan  False   False
  gc-source  spatial     lat_0 -5.2606e-02 ... 9.000e+01  False   False
stacked-bkg spectral      norm  1.3481e+00 ...       nan  False    True
stacked-bkg spectral      tilt  0.0000e+00 ...       nan   True   False
stacked-bkg spectral reference  1.0000e+00 ...       nan   True   False

A quick way to inspect the model residuals is using the function plot_residuals_spatial(). This function computes and plots a residual image (by default, the smoothing radius is 0.1 deg and method=diff, which corresponds to a simple data - model plot):

dataset_stacked.plot_residuals_spatial(method="diff/sqrt(model)", vmin=-1, vmax=1)
analysis 3d
<WCSAxes: >

The more general function plot_residuals() can also extract and display spectral residuals in a region:

region = CircleSkyRegion(spatial_model.position, radius=0.15 * u.deg)
dataset_stacked.plot_residuals(
    kwargs_spatial=dict(method="diff/sqrt(model)", vmin=-1, vmax=1),
    kwargs_spectral=dict(region=region),
)
analysis 3d
(<WCSAxes: >, <Axes: xlabel='Energy [TeV]', ylabel='Residuals (data - model)'>)

This way of accessing residuals is quick and handy, but comes with limitations. For example: - In case a fitting energy range was defined using a MapDataset.mask_fit, it won’t be taken into account. Residuals will be summed up over the whole reconstructed energy range - In order to make a proper statistic treatment, instead of simple residuals a proper residuals significance map should be computed

A more accurate way to inspect spatial residuals is the following:

estimator = ExcessMapEstimator(
    correlation_radius="0.1 deg",
    selection_optional=[],
    energy_edges=[0.1, 1, 10] * u.TeV,
)

result = estimator.run(dataset_stacked)
result["sqrt_ts"].plot_grid(
    figsize=(12, 4), cmap="coolwarm", add_cbar=True, vmin=-5, vmax=5, ncols=2
)
Energy 100 GeV - 1.00 TeV, Energy 1.00 TeV - 10.00 TeV
array([<WCSAxes: title={'center': 'Energy 100 GeV - 1.00 TeV'}>,
       <WCSAxes: title={'center': 'Energy 1.00 TeV - 10.00 TeV'}>],
      dtype=object)

Distribution of residuals significance in the full map geometry:

significance_data = result["sqrt_ts"].data

# Remove bins that are inside an exclusion region, that would create an artificial peak at significance=0.
selection = np.isfinite(significance_data)
significance_data = significance_data[selection]

fig, ax = plt.subplots()

ax.hist(significance_data, density=True, alpha=0.9, color="red", bins=40)
mu, std = norm.fit(significance_data)

x = np.linspace(-5, 5, 100)
p = norm.pdf(x, mu, std)

ax.plot(
    x,
    p,
    lw=2,
    color="black",
    label=r"$\mu$ = {:.2f}, $\sigma$ = {:.2f}".format(mu, std),
)
ax.legend(fontsize=17)
ax.set_xlim(-5, 5)
analysis 3d
(-5.0, 5.0)

Joint analysis#

In this section, we perform a joint analysis of the same data. Of course, joint fitting is considerably heavier than stacked one, and should always be handled with care. For brevity, we only show the analysis for a point source fitting without re-adding a diffuse component again.

Data reduction#

# Read the yaml file from disk
config_joint = AnalysisConfig.read(path=path / "config_joint.yaml")
analysis_joint = Analysis(config_joint)

# select observations:
analysis_joint.get_observations()

# run data reduction
analysis_joint.get_datasets()

# You can see there are 3 datasets now
print(analysis_joint.datasets)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/astropy/units/core.py:2097: UnitsWarning: '1/s/MeV/sr' did not parse as fits unit: Numeric factor not supported by FITS If this is meant to be a custom unit, define it with 'u.def_unit'. To have it recognized inside a file reader or other code, enable it with 'u.add_enabled_units'. For details, see https://docs.astropy.org/en/latest/units/combining_and_defining.html
  warnings.warn(msg, UnitsWarning)
Datasets
--------

Dataset 0:

  Type       : MapDataset
  Name       : LCqU6FgT
  Instrument : CTA
  Models     :

Dataset 1:

  Type       : MapDataset
  Name       : lweTvOfW
  Instrument : CTA
  Models     :

Dataset 2:

  Type       : MapDataset
  Name       : 9eXrRq-d
  Instrument : CTA
  Models     :

You can access each one by name or by index, eg:

MapDataset
----------

  Name                            : LCqU6FgT

  Total counts                    : 40481
  Total background counts         : 36014.51
  Total excess counts             : 4466.49

  Predicted counts                : 36014.51
  Predicted background counts     : 36014.51
  Predicted excess counts         : nan

  Exposure min                    : 6.28e+07 m2 s
  Exposure max                    : 6.68e+09 m2 s

  Number of total bins            : 1085000
  Number of fit bins              : 693940

  Fit statistic type              : cash
  Fit statistic value (-2 log(L)) : nan

  Number of models                : 0
  Number of parameters            : 0
  Number of free parameters       : 0

After the data reduction stage, it is nice to get a quick summary info on the datasets. Here, we look at the statistics in the center of Map, by passing an appropriate region. To get info on the entire spatial map, omit the region argument.

  name   counts       excess      ... n_fit_bins stat_type stat_sum
                                  ...
-------- ------ ----------------- ... ---------- --------- --------
LCqU6FgT  40481       4466.484375 ...     693940      cash      nan
lweTvOfW  40525  4510.50552319589 ...     693940      cash      nan
9eXrRq-d  40235 4220.480554966154 ...     693940      cash      nan
Models

Component 0: SkyModel

  Name                      : source-joint
  Datasets names            : None
  Spectral model type       : ExpCutoffPowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.414   +/-    0.15
    amplitude                     :   2.66e-12   +/- 3.1e-13 1 / (cm2 s TeV)
    reference             (frozen):      1.000       TeV
    lambda_                       :     -0.013   +/-    0.07 1 / TeV
    alpha                 (frozen):      1.000
    lon_0                         :     -0.048   +/-    0.00 deg
    lat_0                         :     -0.053   +/-    0.00 deg

Component 1: FoVBackgroundModel

  Name                      : LCqU6FgT-bkg
  Datasets names            : ['LCqU6FgT']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.000   +/-    0.00
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV

Component 2: FoVBackgroundModel

  Name                      : lweTvOfW-bkg
  Datasets names            : ['lweTvOfW']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.000   +/-    0.00
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV

Component 3: FoVBackgroundModel

  Name                      : 9eXrRq-d-bkg
  Datasets names            : ['9eXrRq-d']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.000   +/-    0.00
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV
fit_joint = Fit()
result_joint = fit_joint.run(datasets=analysis_joint.datasets)

Fit quality assessment and model residuals for a joint Datasets#

We can access the results dictionary to see if the fit converged:

print(result_joint)
OptimizeResult

        backend    : minuit
        method     : migrad
        success    : True
        message    : Optimization terminated successfully.
        nfev       : 221
        total stat : 748259.16

CovarianceResult

        backend    : minuit
        method     : hesse
        success    : True
        message    : Hesse terminated successfully.

Check best-fit parameters and error estimates:

print(models_joint)
Models

Component 0: SkyModel

  Name                      : source-joint
  Datasets names            : None
  Spectral model type       : ExpCutoffPowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.272   +/-    0.08
    amplitude                     :   2.84e-12   +/- 3.1e-13 1 / (cm2 s TeV)
    reference             (frozen):      1.000       TeV
    lambda_                       :      0.039   +/-    0.05 1 / TeV
    alpha                 (frozen):      1.000
    lon_0                         :     -0.049   +/-    0.00 deg
    lat_0                         :     -0.053   +/-    0.00 deg

Component 1: FoVBackgroundModel

  Name                      : LCqU6FgT-bkg
  Datasets names            : ['LCqU6FgT']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.118   +/-    0.01
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV

Component 2: FoVBackgroundModel

  Name                      : lweTvOfW-bkg
  Datasets names            : ['lweTvOfW']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.119   +/-    0.01
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV

Component 3: FoVBackgroundModel

  Name                      : 9eXrRq-d-bkg
  Datasets names            : ['9eXrRq-d']
  Spectral model type       : PowerLawNormSpectralModel
  Parameters:
    norm                          :      1.111   +/-    0.01
    tilt                  (frozen):      0.000
    reference             (frozen):      1.000       TeV

Since the joint dataset is made of multiple datasets, we can either: - Look at the residuals for each dataset separately. In this case, we can directly refer to the section Fit quality and model residuals for a MapDataset in this notebook - Or, look at a stacked residual map.

analysis 3d
<WCSAxes: >

Then, we can access the stacked model residuals as previously shown in the section Fit quality and model residuals for a MapDataset in this notebook.

Finally, let us compare the spectral results from the stacked and joint fit:

def plot_spectrum(model, ax, label, color):
    spec = model.spectral_model
    energy_bounds = [0.3, 10] * u.TeV
    spec.plot(
        ax=ax, energy_bounds=energy_bounds, energy_power=2, label=label, color=color
    )
    spec.plot_error(ax=ax, energy_bounds=energy_bounds, energy_power=2, color=color)


fig, ax = plt.subplots()
plot_spectrum(model, ax=ax, label="stacked", color="tab:blue")
plot_spectrum(model_joint, ax=ax, label="joint", color="tab:orange")
ax.legend()
plt.show()
analysis 3d

Summary#

Note that this notebook aims to show you the procedure of a 3D analysis using just a few observations. Results get much better for a more complete analysis considering the GPS dataset from the CTA First Data Challenge (DC-1) and also the CTA model for the Galactic diffuse emission, as shown in the next image:

../../_images/DC1_3d.png

Exercises#

  • Analyse the second source in the field of view: G0.9+0.1 and add it to the combined model.

  • Perform modeling in more details - Add diffuse component, get flux points.

Total running time of the script: ( 0 minutes 56.425 seconds)

Gallery generated by Sphinx-Gallery