Source code for gammapy.modeling.datasets

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import abc
import collections.abc
import copy
import numpy as np
from gammapy.utils.scripts import make_path, read_yaml, write_yaml
from gammapy.utils.table import table_from_row_data
from ..maps import WcsNDMap
from .parameter import Parameters

__all__ = ["Dataset", "Datasets"]


[docs]class Dataset(abc.ABC): """Dataset abstract base class. TODO: add tutorial how to create your own dataset types. For now, see existing examples in Gammapy how this works: - `gammapy.cube.MapDataset` - `gammapy.spectrum.SpectrumDataset` - `gammapy.spectrum.FluxPointsDataset` """ _residuals_labels = { "diff": "data - model", "diff/model": "(data - model) / model", "diff/sqrt(model)": "(data - model) / sqrt(model)", } @property def mask(self): """Combined fit and safe mask""" mask_safe = ( self.mask_safe.data if isinstance(self.mask_safe, WcsNDMap) else self.mask_safe ) mask_fit = ( self.mask_fit.data if isinstance(self.mask_fit, WcsNDMap) else self.mask_fit ) if mask_safe is not None and mask_fit is not None: mask = mask_safe & mask_fit elif mask_fit is not None: mask = mask_fit elif mask_safe is not None: mask = mask_safe else: mask = None return mask
[docs] def stat_sum(self): """Total statistic given the current model parameters.""" stat = self.stat_array() if self.mask is not None: stat = stat[self.mask] return np.sum(stat, dtype=np.float64)
[docs] @abc.abstractmethod def stat_array(self): """Statistic array, one value per data point."""
[docs] def copy(self): """A deep copy.""" return copy.deepcopy(self)
@staticmethod def _compute_residuals(data, model, method="diff"): with np.errstate(invalid="ignore"): if method == "diff": residuals = data - model elif method == "diff/model": residuals = (data - model) / model elif method == "diff/sqrt(model)": residuals = (data - model) / np.sqrt(model) else: raise AttributeError( f"Invalid method: {method!r}. Choose between 'diff'," " 'diff/model' and 'diff/sqrt(model)'" ) return residuals
[docs]class Datasets(collections.abc.Sequence): """Dataset collection. Parameters ---------- datasets : `Dataset` or list of `Dataset` Datasets """ def __init__(self, datasets): if isinstance(datasets, Datasets): self._datasets = list(datasets) elif isinstance(datasets, list): self._datasets = datasets else: raise TypeError(f"Invalid type: {datasets!r}") @property def parameters(self): """Unique parameters (`~gammapy.modeling.Parameters`). Duplicate parameter objects have been removed. The order of the unique parameters remains. """ parameters = Parameters.from_stack(_.parameters for _ in self) return parameters.unique_parameters @property def is_all_same_type(self): """Whether all contained datasets are of the same type""" return len(set(_.__class__ for _ in self)) == 1 @property def is_all_same_shape(self): """Whether all contained datasets have the same data shape""" return len(set(_.data_shape for _ in self)) == 1
[docs] def stat_sum(self): """Compute joint likelihood""" stat_sum = 0 # TODO: add parallel evaluation of likelihoods for dataset in self: stat_sum += dataset.stat_sum() return stat_sum
def __str__(self): str_ = self.__class__.__name__ + "\n" str_ += "--------\n" for idx, dataset in enumerate(self): str_ += f"idx={idx}, id={hex(id(dataset))!r}, name={dataset.name!r}\n" return str_
[docs] def copy(self): """A deep copy.""" return copy.deepcopy(self)
[docs] @classmethod def read(cls, filedata, filemodel): """De-serialize datasets from YAML and FITS files. Parameters ---------- filedata : str filepath to yaml datasets file filemodel : str filepath to yaml models file Returns ------- dataset : 'gammapy.modeling.Datasets' Datasets """ from .serialize import dict_to_datasets components = read_yaml(make_path(filemodel)) data_list = read_yaml(make_path(filedata)) datasets = dict_to_datasets(data_list, components) return cls(datasets)
[docs] def write(self, path, prefix="", overwrite=False): """Serialize datasets to YAML and FITS files. Parameters ---------- path : `pathlib.Path` path to write files prefix : str common prefix of file names overwrite : bool overwrite datasets FITS files """ from .serialize import datasets_to_dict path = make_path(path) datasets_dict, components_dict = datasets_to_dict(self, path, prefix, overwrite) write_yaml(datasets_dict, path / f"{prefix}_datasets.yaml", sort_keys=False) write_yaml(components_dict, path / f"{prefix}_models.yaml", sort_keys=False)
[docs] def stack_reduce(self): """Reduce the Datasets to a unique Dataset by stacking them together. This works only if all Dataset are of the same type and if a proper in-place stack method exists for the Dataset type. Returns ------- dataset : ~gammapy.utils.Dataset the stacked dataset """ if not self.is_all_same_type: raise ValueError( "Stacking impossible: all Datasets contained are not of a unique type." ) dataset = self[0].copy() for ds in self[1:]: dataset.stack(ds) return dataset
[docs] def info_table(self, cumulative=False): """Get info table for datasets. Parameters ---------- cumulative : bool Cumulate info across all observations Returns ------- info_table : `~astropy.table.Table` Info table. """ if not self.is_all_same_type: raise ValueError("Info table not supported for mixed dataset type.") stacked = self[0].copy() rows = [stacked.info_dict()] for dataset in self[1:]: if cumulative: stacked.stack(dataset) row = stacked.info_dict() else: row = dataset.info_dict() rows.append(row) return table_from_row_data(rows=rows)
def __getitem__(self, val): if isinstance(val, (int, slice)): return self._datasets[val] elif isinstance(val, str): for idx, dataset in enumerate(self._datasets): if val == dataset.name: return self._datasets[idx] raise IndexError(f"No dataset: {val!r}") else: raise TypeError(f"Invalid type: {type(val)!r}") def __len__(self): return len(self._datasets)