Source code for gammapy.spectrum.phase

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from gammapy.data import EventList
from .core import CountsSpectrum
from .dataset import SpectrumDatasetOnOff

__all__ = ["PhaseBackgroundMaker"]


[docs]class PhaseBackgroundMaker: """Background estimation with on and off phases. TODO: For a usage example see future notebook. TODO: The phase interval has to be between 0 and 1. Cases like [-0.1, 0.1], for example, are still not supported. Parameters ---------- on_phase : `tuple` or list of tuples on-phase defined by the two edges of each interval (edges are excluded) off_phase : `tuple` or list of tuples off-phase defined by the two edges of each interval (edges are excluded) """ def __init__(self, on_phase, off_phase): self.on_phase = self._check_intervals(on_phase) self.off_phase = self._check_intervals(off_phase) def __str__(self): s = self.__class__.__name__ s += f"\n{self.on_phase}" s += f"\n{self.off_phase}" return s @staticmethod def _make_counts(dataset, observation, phases): events = observation.events.select_region(dataset.counts.region) event_lists = [] for interval in phases: events = events.select_parameter(parameter="PHASE", band=interval) event_lists.append(events) events_off = EventList.stack(event_lists) edges = dataset.counts.energy.edges counts = CountsSpectrum(energy_hi=edges[1:], energy_lo=edges[:-1]) counts.fill_events(events_off) return counts
[docs] def make_counts_off(self, dataset, observation): """Make off counts. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `DatastoreObservation` Data store observation. Returns ------- counts_off : `CountsSpectrum` Off counts. """ return self._make_counts(dataset, observation, self.off_phase)
[docs] def make_counts(self, dataset, observation): """Make off counts. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `DatastoreObservation` Data store observation. Returns ------- counts_off : `CountsSpectrum` Off counts. """ return self._make_counts(dataset, observation, self.on_phase)
[docs] def run(self, dataset, observation): """Run all steps. Parameters ---------- dataset : `SpectrumDataset` Input dataset. observation : `DataStoreObservation` Data store observation. Returns ------- dataset_on_off : `SpectrumDatasetOnOff` On off dataset. """ counts_off = self.make_counts_off(dataset, observation) counts = self.make_counts(dataset, observation) acceptance = np.sum([_[1] - _[0] for _ in self.on_phase]) acceptance_off = np.sum([_[1] - _[0] for _ in self.off_phase]) return SpectrumDatasetOnOff( counts=counts, counts_off=counts_off, gti=dataset.gti, name=dataset.name, livetime=dataset.livetime, edisp=dataset.edisp, aeff=dataset.aeff, acceptance=acceptance, acceptance_off=acceptance_off, mask_safe=dataset.mask_safe, mask_fit=dataset.mask_fit, )
@staticmethod def _check_intervals(intervals): """Split phase intervals that go beyond phase 1""" if isinstance(intervals, tuple): intervals = [intervals] for phase_interval in intervals: if phase_interval[0] > phase_interval[1]: intervals.remove(phase_interval) intervals.append([phase_interval[0], 1]) intervals.append([0, phase_interval[1]]) return intervals