AnalysisConfig¶
-
class
gammapy.analysis.
AnalysisConfig
[source]¶ Bases:
gammapy.analysis.config.GammapyBaseConfig
Gammapy analysis configuration.
Attributes Summary
copy
(self, \*, include, ForwardRef] = None, …)Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(self, \*, include, ForwardRef] = None, …)Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json
(self, \*, include, ForwardRef] = None, …)Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.to_string
(self, pretty)Methods Summary
construct
(_fields_set, NoneType] = None, …)Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
from_orm
(obj)from_yaml
(config_str)Create from YAML string.
parse_file
(path, pathlib.Path], \*, …)parse_obj
(obj)parse_raw
(b, bytes], \*, content_type, …)read
(path)Reads from YAML file.
schema
(by_alias)schema_json
(\*, by_alias, \*\*dumps_kwargs)set_logging
(self)Set logging config.
to_yaml
(self)Convert to YAML string.
update
(self[, config])Update config with provided settings.
update_forward_refs
(\*\*localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)write
(self, path[, overwrite])Write to YAML file.
Attributes Documentation
-
copy
(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, update: 'DictStrAny' = None, deep: bool = False) → 'Model'¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to
True
to make a deep copy of the model
- Returns
new model instance
-
dict
(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False) → 'DictStrAny'¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
fields
¶
-
json
(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('DictIntStrAny')] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, encoder: Union[Callable[[Any], Any], NoneType] = None, **dumps_kwargs: Any) → 'unicode'¶ Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.encoder
is an optional function to supply asdefault
to json.dumps(), other arguments as perjson.dumps()
.
-
to_string
(self, pretty: bool = False) → 'unicode'¶
Methods Documentation
-
classmethod
construct
(_fields_set: Union[ForwardRef('SetStr'), NoneType] = None, **values: Any) → 'Model'¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
-
classmethod
from_orm
(obj: Any) → 'Model'¶
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: 'unicode' = None, encoding: 'unicode' = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → 'Model'¶
-
classmethod
parse_obj
(obj: Any) → 'Model'¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: 'unicode' = None, encoding: 'unicode' = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → 'Model'¶
-
classmethod
schema
(by_alias: bool = True) → 'DictStrAny'¶
-
classmethod
schema_json
(*, by_alias: bool = True, **dumps_kwargs: Any) → 'unicode'¶
-
set_logging
(self)[source]¶ Set logging config.
Calls
logging.basicConfig
, i.e. adjusts global logging state.
-
update
(self, config=None)[source]¶ Update config with provided settings.
- Parameters
- configstring dict or
AnalysisConfig
object Configuration settings provided in dict() syntax.
- configstring dict or
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → 'Model'¶
-