Parameters¶
-
class
gammapy.modeling.Parameters(parameters=None, covariance=None)[source]¶ Bases:
collections.abc.SequenceParameters container.
List of
Parameterobjects.Covariance matrix.
- Parameters
Attributes Summary
Correlation matrix (
numpy.ndarray).Covariance matrix (
numpy.ndarray).List of free parameters
List of parameter names
Context manager to restore values.
Unique parameters (
Parameters).Parameter values (
numpy.ndarray).Methods Summary
autoscale(self[, method])Autoscale all parameters.
copy(self)A deep copy
count(self, value)error(self, parname)Get parameter error.
freeze_all(self)Freeze all parameters
from_dict(data)from_stack(parameters_list)Create
Parametersby stacking a list of otherParametersobjects.from_values([values, covariance])Create
Parametersfrom values.get_subcovariance(self, parameters)Get sub-covariance matrix
index(self, value[, start, stop])Raises ValueError if the value is not present.
link(self, par, other_par)Create link to other parameter
set_covariance_factors(self, matrix)Set covariance from factor covariance matrix.
set_error(self, \*\*kwargs)Set errors on parameters.
set_parameter_factors(self, factors)Set factor of all parameters.
set_subcovariance(self, parameters)Set sub-covariance matrix
to_dict(self)to_table(self)Convert parameter attributes to
Table.update_from_dict(self, data)Attributes Documentation
-
correlation¶ Correlation matrix (
numpy.ndarray).Correlation \(C\) is related to covariance \(\Sigma\) via:
\[C_{ij} = \frac{ \Sigma_{ij} }{ \sqrt{\Sigma_{ii} \Sigma_{jj}} }\]
-
covariance¶ Covariance matrix (
numpy.ndarray).
-
free_parameters¶ List of free parameters
-
names¶ List of parameter names
-
restore_values¶ Context manager to restore values.
A copy of the values is made on enter, and those values are restored on exit.
Examples
from gammapy.modeling.models import PowerLawSpectralModel pwl = PowerLawSpectralModel(index=2) with pwl.parameters.restore_values: pwl.parameters["index"].value = 3 print(pwl.parameters["index"].value)
-
scipy_mvn¶
-
unique_parameters¶ Unique parameters (
Parameters).
-
values¶ Parameter values (
numpy.ndarray).
Methods Documentation
-
autoscale(self, method='scale10')[source]¶ Autoscale all parameters.
See
autoscale()- Parameters
- method{‘factor1’, ‘scale10’}
Method to apply
-
count(self, value)¶
-
error(self, parname)[source]¶ Get parameter error.
- Parameters
- parnamestr, int
Parameter name or index
-
classmethod
from_stack(parameters_list)[source]¶ Create
Parametersby stacking a list of otherParametersobjects.- Parameters
- parameters_listlist of
Parameters List of
Parametersobjects
- parameters_listlist of
-
classmethod
from_values(values=None, covariance=None)[source]¶ Create
Parametersfrom values.TODO: document.
-
get_subcovariance(self, parameters)[source]¶ Get sub-covariance matrix
- Parameters
- parameters
Parameters Sub list of parameters.
- parameters
- Returns
- covariance
ndarray Sub-covariance.
- covariance
-
index(self, value, start=0, stop=None)¶ Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
-
set_covariance_factors(self, matrix)[source]¶ Set covariance from factor covariance matrix.
Used in the optimizer interface.
-
set_error(self, **kwargs)[source]¶ Set errors on parameters.
Pass parameter errors as keyword arguments, similar to how parameter values are passed in other places.
Usually parameter errors come via a fit and a covariance matrix. This method is only used to make models from previously published results, e.g. in
gammapy.catalog.Examples
>>> from gammapy.modeling.models import PowerLawSpectralModel >>> model = PowerLawSpectralModel(amplitude="4.2e-11 cm-2 s-1 TeV-1", index=2.7) >>> model.parameters.set_error(amplitude="0.6-11 cm-2 s-1 TeV-1", index=0.2)
-
set_parameter_factors(self, factors)[source]¶ Set factor of all parameters.
Used in the optimizer interface.
-
set_subcovariance(self, parameters)[source]¶ Set sub-covariance matrix
- Parameters
- parameters
Parameters Sub list of parameters.
- parameters