Source code for gammapy.modeling.models.cube

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Cube models (axes: lon, lat, energy)."""
import collections.abc
import copy
from pathlib import Path
import numpy as np
import astropy.units as u
import yaml
from gammapy.maps import Map
from gammapy.modeling import Model, Parameter, Parameters
from gammapy.utils.scripts import make_path


[docs]class SkyModelBase(Model): """Sky model base class""" def __add__(self, other): if isinstance(other, (SkyModels, list)): return SkyModels([self, *other]) elif isinstance(other, (SkyModel, SkyDiffuseCube)): return SkyModels([self, other]) else: raise TypeError(f"Invalid type: {other!r}") def __radd__(self, model): return self.__add__(model)
[docs] def __call__(self, lon, lat, energy): return self.evaluate(lon, lat, energy)
[docs] def evaluate_geom(self, geom): coords = geom.get_coord(coordsys=self.frame) return self(coords.lon, coords.lat, coords["energy"])
[docs]class SkyModels(collections.abc.Sequence): """Sky model collection. Parameters ---------- skymodels : list of `SkyModel` Sky models """ def __init__(self, skymodels): if not isinstance(skymodels, list): raise TypeError(f"Not a list: {skymodels!r}") self._skymodels = skymodels @property def parameters(self): return Parameters.from_stack([_.parameters for _ in self._skymodels])
[docs] @classmethod def read(cls, filename): """Read from YAML file.""" yaml_str = Path(filename).read_text() return cls.from_yaml(yaml_str)
[docs] @classmethod def from_yaml(cls, yaml_str): """Create from YAML string.""" from gammapy.modeling.serialize import dict_to_models data = yaml.safe_load(yaml_str) skymodels = dict_to_models(data) return cls(skymodels)
[docs] def write(self, path, overwrite=False): """Write to YAML file.""" path = make_path(path) if path.exists() and not overwrite: raise IOError(f"File exists already: {path}") path.write_text(self.to_yaml())
[docs] def to_yaml(self): """Convert to YAML string.""" from gammapy.modeling.serialize import models_to_dict data = models_to_dict(self._skymodels) return yaml.dump( data, sort_keys=False, indent=4, width=80, default_flow_style=None )
def __str__(self): str_ = f"{self.__class__.__name__}\n\n" for idx, skymodel in enumerate(self): str_ += f"Component {idx}: {skymodel}\n\n\t\n\n" return str_ def __add__(self, other): if isinstance(other, (SkyModels, list)): return SkyModels([*self, *other]) elif isinstance(other, (SkyModel, SkyDiffuseCube)): return SkyModels([*self, other]) else: raise TypeError(f"Invalid type: {other!r}") def __getitem__(self, val): if isinstance(val, int): return self._skymodels[val] elif isinstance(val, str): for idx, model in enumerate(self._skymodels): if val == model.name: return self._skymodels[idx] raise IndexError(f"No model: {val!r}") else: raise TypeError(f"Invalid type: {type(val)!r}") def __len__(self): return len(self._skymodels)
[docs]class SkyModel(SkyModelBase): """Sky model component. This model represents a factorised sky model. It has `~gammapy.modeling.Parameters` combining the spatial and spectral parameters. TODO: add possibility to have a temporal model component also. Parameters ---------- spectral_model : `~gammapy.modeling.models.SpectralModel` Spectral model spatial_model : `~gammapy.modeling.models.SpatialModel` Spatial model (must be normalised to integrate to 1) name : str Model identifier """ tag = "SkyModel" def __init__(self, spectral_model, spatial_model=None, name="source"): self.name = name self.spatial_model = spatial_model self.spectral_model = spectral_model super().__init__() # TODO: this hack is needed for compound models to work self.__dict__.pop("_parameters") @property def parameters(self): parameters = [] if self.spatial_model is not None: parameters.append(self.spatial_model.parameters) parameters.append(self.spectral_model.parameters) return Parameters.from_stack(parameters) @property def spatial_model(self): """`~gammapy.modeling.models.SpatialModel`""" return self._spatial_model @spatial_model.setter def spatial_model(self, model): from .spatial import SpatialModel if not (model is None or isinstance(model, SpatialModel)): raise TypeError(f"Invalid type: {model!r}") self._spatial_model = model @property def spectral_model(self): """`~gammapy.modeling.models.SpectralModel`""" return self._spectral_model @spectral_model.setter def spectral_model(self, model): from .spectral import SpectralModel if not (model is None or isinstance(model, SpectralModel)): raise TypeError(f"Invalid type: {model!r}") self._spectral_model = model @property def position(self): """`~astropy.coordinates.SkyCoord`""" return self.spatial_model.position @property def evaluation_radius(self): """`~astropy.coordinates.Angle`""" return self.spatial_model.evaluation_radius @property def frame(self): return self.spatial_model.frame def __repr__(self): return ( f"{self.__class__.__name__}(" f"spatial_model={self.spatial_model!r}, " f"spectral_model={self.spectral_model!r})" )
[docs] def evaluate(self, lon, lat, energy): """Evaluate the model at given points. The model evaluation follows numpy broadcasting rules. Return differential surface brightness cube. At the moment in units: ``cm-2 s-1 TeV-1 deg-2`` Parameters ---------- lon, lat : `~astropy.units.Quantity` Spatial coordinates energy : `~astropy.units.Quantity` Energy coordinate Returns ------- value : `~astropy.units.Quantity` Model value at the given point. """ value = self.spectral_model(energy) # pylint:disable=not-callable if self.spatial_model is not None: value = value * self.spatial_model(lon, lat) # pylint:disable=not-callable return value
[docs] def evaluate_geom(self, geom): """Evaluate model on `~gammapy.maps.Geom`.""" energy = geom.get_axis_by_name("energy").center[:, np.newaxis, np.newaxis] value = self.spectral_model(energy) if self.spatial_model is not None: value = value * self.spatial_model.evaluate_geom(geom.to_image()) return value
[docs] def copy(self, **kwargs): """Copy SkyModel""" if self.spatial_model is not None: spatial_model = self.spatial_model.copy() else: spatial_model = None kwargs.setdefault("spatial_model", spatial_model) kwargs.setdefault("spectral_model", self.spectral_model.copy()) kwargs.setdefault("name", self.name + "-copy") return self.__class__(**kwargs)
[docs] def to_dict(self): """Create dict for YAML serilisation""" data = {} data["name"] = self.name data["type"] = self.tag data["spectral"] = self.spectral_model.to_dict() if self.spatial_model is not None: data["spatial"] = self.spatial_model.to_dict() return data
[docs] @classmethod def from_dict(cls, data): """Create SkyModel from dict""" from gammapy.modeling.models import SPATIAL_MODELS, SPECTRAL_MODELS model_class = SPECTRAL_MODELS.get_cls(data["spectral"]["type"]) spectral_model = model_class.from_dict(data["spectral"]) spatial_data = data.get("spatial") if spatial_data is not None: model_class = SPATIAL_MODELS.get_cls(spatial_data["type"]) spatial_model = model_class.from_dict(spatial_data) else: spatial_model = None return cls( name=data["name"], spatial_model=spatial_model, spectral_model=spectral_model, )
[docs]class SkyDiffuseCube(SkyModelBase): """Cube sky map template model (3D). This is for a 3D map with an energy axis. Use `~gammapy.modeling.models.TemplateSpatialModel` for 2D maps. Parameters ---------- map : `~gammapy.maps.Map` Map template norm : float Norm parameter (multiplied with map values) tilt : float Additional tilt in the spectrum reference : `~astropy.units.Quantity` Reference energy of the tilt. meta : dict, optional Meta information, meta['filename'] will be used for serialization interp_kwargs : dict Interpolation keyword arguments passed to `gammapy.maps.Map.interp_by_coord`. Default arguments are {'interp': 'linear', 'fill_value': 0}. """ tag = "SkyDiffuseCube" norm = Parameter("norm", 1) tilt = Parameter("tilt", 0, unit="", frozen=True) reference = Parameter("reference", "1 TeV", frozen=True) def __init__( self, map, norm=norm.quantity, tilt=tilt.quantity, reference=reference.quantity, meta=None, interp_kwargs=None, name="diffuse", filename=None, ): self.name = name axis = map.geom.get_axis_by_name("energy") if axis.node_type != "center": raise ValueError('Need a map with energy axis node_type="center"') self.map = map self.meta = {} if meta is None else meta self.filename = filename interp_kwargs = {} if interp_kwargs is None else interp_kwargs interp_kwargs.setdefault("interp", "linear") interp_kwargs.setdefault("fill_value", 0) self._interp_kwargs = interp_kwargs # TODO: onve we have implement a more general and better model caching # remove this again self._cached_value = None self._cached_coordinates = (None, None, None) super().__init__(norm=norm, tilt=tilt, reference=reference)
[docs] @classmethod def read(cls, filename, **kwargs): """Read map from FITS file. The default unit used if none is found in the file is ``cm-2 s-1 MeV-1 sr-1``. Parameters ---------- filename : str FITS image filename. """ m = Map.read(filename, **kwargs) if m.unit == "": m.unit = "cm-2 s-1 MeV-1 sr-1" name = Path(filename).stem return cls(m, name=name, filename=filename)
def _interpolate(self, lon, lat, energy): coord = { "lon": lon.to_value("deg"), "lat": lat.to_value("deg"), "energy": energy, } return self.map.interp_by_coord(coord, **self._interp_kwargs)
[docs] def evaluate(self, lon, lat, energy): """Evaluate model.""" is_cached_coord = [ _ is coord for _, coord in zip((lon, lat, energy), self._cached_coordinates) ] # reset cache if not np.all(is_cached_coord): self._cached_value = None if self._cached_value is None: self._cached_coordinates = (lon, lat, energy) self._cached_value = self._interpolate(lon, lat, energy) norm = self.parameters["norm"].value tilt = self.parameters["tilt"].value reference = self.parameters["reference"].quantity tilt_factor = np.power((energy / reference).to(""), -tilt) val = norm * self._cached_value * tilt_factor.value return u.Quantity(val, self.map.unit, copy=False)
[docs] def copy(self): """A shallow copy""" return copy.copy(self)
@property def position(self): """`~astropy.coordinates.SkyCoord`""" return self.map.geom.center_skydir @property def evaluation_radius(self): """`~astropy.coordinates.Angle`""" return np.max(self.map.geom.width) / 2.0 @property def frame(self): return self.position.frame.name
[docs] @classmethod def from_dict(cls, data): model = cls.read(data["filename"]) model._update_from_dict(data) return model
[docs] def to_dict(self): data = super().to_dict() data["name"] = self.name data["type"] = data.pop("type") data["filename"] = self.filename # Move parameters at the end data["parameters"] = data.pop("parameters") return data
[docs]class BackgroundModel(Model): """Background model. Create a new map by a tilt and normalization on the available map Parameters ---------- map : `~gammapy.maps.Map` Background model map norm : float Background normalization tilt : float Additional tilt in the spectrum reference : `~astropy.units.Quantity` Reference energy of the tilt. """ tag = "BackgroundModel" norm = Parameter("norm", 1, unit="", min=0) tilt = Parameter("tilt", 0, unit="", frozen=True) reference = Parameter("reference", "1 TeV", frozen=True) def __init__( self, map, norm=norm.quantity, tilt=tilt.quantity, reference=reference.quantity, name="background", filename=None, ): axis = map.geom.get_axis_by_name("energy") if axis.node_type != "edges": raise ValueError('Need an integrated map, energy axis node_type="edges"') self.map = map self.name = name self.filename = filename super().__init__(norm=norm, tilt=tilt, reference=reference) @property def energy_center(self): """True energy axis bin centers (`~astropy.units.Quantity`)""" energy_axis = self.map.geom.get_axis_by_name("energy") energy = energy_axis.center return energy[:, np.newaxis, np.newaxis]
[docs] def evaluate(self): """Evaluate background model. Returns ------- background_map : `~gammapy.maps.Map` Background evaluated on the Map """ norm = self.parameters["norm"].value tilt = self.parameters["tilt"].value reference = self.parameters["reference"].quantity tilt_factor = np.power((self.energy_center / reference).to(""), -tilt) back_values = norm * self.map.data * tilt_factor.value return self.map.copy(data=back_values)
[docs] def to_dict(self): data = {} data["name"] = self.name data.update(super().to_dict()) if self.filename is not None: data["filename"] = self.filename data["parameters"] = data.pop("parameters") return data
[docs] @classmethod def from_dict(cls, data): if "filename" in data: map = Map.read(data["filename"]) elif "map" in data: map = data["map"] else: raise ValueError("Requires either filename or `Map` object") model = cls(map=map, name=data["name"]) model._update_from_dict(data) return model
def create_fermi_isotropic_diffuse_model(filename, **kwargs): """Read Fermi isotropic diffuse model. See `LAT Background models <https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html>`_ Parameters ---------- filename : str filename kwargs : dict Keyword arguments forwarded to `TemplateSpectralModel` Returns ------- diffuse_model : `SkyModel` Fermi isotropic diffuse sky model. """ from .spectral import TemplateSpectralModel from .spatial import ConstantSpatialModel vals = np.loadtxt(make_path(filename)) energy = u.Quantity(vals[:, 0], "MeV", copy=False) values = u.Quantity(vals[:, 1], "MeV-1 s-1 cm-2", copy=False) spatial_model = ConstantSpatialModel() spectral_model = TemplateSpectralModel(energy=energy, values=values, **kwargs) return SkyModel( spatial_model=spatial_model, spectral_model=spectral_model, name="fermi-diffuse-iso", )