BackgroundModel

class gammapy.modeling.models.BackgroundModel(map, norm=<Quantity 1.>, tilt=<Quantity 0.>, reference=<Quantity 1. TeV>, name='background', filename=None)[source]

Bases: gammapy.modeling.Model

Background model.

Create a new map by a tilt and normalization on the available map

Parameters
mapMap

Background model map

normfloat

Background normalization

tiltfloat

Additional tilt in the spectrum

referenceQuantity

Reference energy of the tilt.

Attributes Summary

default_parameters

energy_center

True energy axis bin centers (Quantity)

norm

A model parameter.

parameters

Parameters (Parameters)

reference

A model parameter.

tag

tilt

A model parameter.

Methods Summary

copy(self)

A deep copy.

create(tag, \*args, \*\*kwargs)

Create a model instance.

evaluate(self)

Evaluate background model.

from_dict(data)

to_dict(self)

Create dict for YAML serialisation

Attributes Documentation

default_parameters = <gammapy.modeling.parameter.Parameters object>
energy_center

True energy axis bin centers (Quantity)

norm

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor` and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters
namestr

Name

factorfloat or Quantity

Factor

scalefloat, optional

Scale (sometimes used in fitting)

unitUnit or str, optional

Unit

minfloat, optional

Minimum (sometimes used in fitting)

maxfloat, optional

Maximum (sometimes used in fitting)

frozenbool, optional

Frozen? (used in fitting)

parameters

Parameters (Parameters)

reference

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor` and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters
namestr

Name

factorfloat or Quantity

Factor

scalefloat, optional

Scale (sometimes used in fitting)

unitUnit or str, optional

Unit

minfloat, optional

Minimum (sometimes used in fitting)

maxfloat, optional

Maximum (sometimes used in fitting)

frozenbool, optional

Frozen? (used in fitting)

tag = 'BackgroundModel'
tilt

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor` and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters
namestr

Name

factorfloat or Quantity

Factor

scalefloat, optional

Scale (sometimes used in fitting)

unitUnit or str, optional

Unit

minfloat, optional

Minimum (sometimes used in fitting)

maxfloat, optional

Maximum (sometimes used in fitting)

frozenbool, optional

Frozen? (used in fitting)

Methods Documentation

copy(self)

A deep copy.

static create(tag, *args, **kwargs)

Create a model instance.

Examples

>>> from gammapy.modeling import Model
>>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3)
>>> type(spectral_model)
gammapy.modeling.models.spectral.PowerLaw2SpectralModel
evaluate(self)[source]

Evaluate background model.

Returns
background_mapMap

Background evaluated on the Map

classmethod from_dict(data)[source]
to_dict(self)[source]

Create dict for YAML serialisation