BackgroundModel¶
-
class
gammapy.modeling.models.
BackgroundModel
(map, norm=<Quantity 1.>, tilt=<Quantity 0.>, reference=<Quantity 1. TeV>, name='background', filename=None)[source]¶ Bases:
gammapy.modeling.Model
Background model.
Create a new map by a tilt and normalization on the available map
- Parameters
Attributes Summary
True energy axis bin centers (
Quantity
)A model parameter.
Parameters (
Parameters
)A model parameter.
A model parameter.
Methods Summary
copy
(self)A deep copy.
create
(tag, \*args, \*\*kwargs)Create a model instance.
evaluate
(self)Evaluate background model.
from_dict
(data)to_dict
(self)Create dict for YAML serialisation
Attributes Documentation
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
norm
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters
¶ Parameters (
Parameters
)
-
reference
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
tag
= 'BackgroundModel'¶
-
tilt
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
Methods Documentation
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel