Source code for gammapy.modeling.models.spectral

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Spectral models for Gammapy."""
import operator
import numpy as np
import scipy.optimize
import scipy.special
import astropy.units as u
from astropy.table import Table
from gammapy.maps import MapAxis
from gammapy.modeling import Model, Parameter, Parameters
from gammapy.utils.integrate import integrate_spectrum
from gammapy.utils.interpolation import ScaledRegularGridInterpolator
from gammapy.utils.scripts import make_path


[docs]class SpectralModel(Model): """Spectral model base class."""
[docs] def __call__(self, energy): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy) return self.evaluate(energy, **kwargs)
@staticmethod def _convert_evaluate_unit(kwargs_ref, energy): kwargs = {} for name, quantity in kwargs_ref.items(): if quantity.unit.physical_type == "energy": quantity = quantity.to(energy.unit) kwargs[name] = quantity return kwargs def __add__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.add) def __radd__(self, model): return self.__add__(model) def __sub__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.sub) def __rsub__(self, model): return self.__sub__(model) def _evaluate_gradient(self, energy, eps): n = len(self.parameters) f = self(energy) shape = (n, len(np.atleast_1d(energy))) df_dp = np.zeros(shape) for idx, parameter in enumerate(self.parameters): if parameter.frozen or eps[idx] == 0: continue parameter.value += eps[idx] df = self(energy) - f df_dp[idx] = df.value / eps[idx] # Reset model to original parameter parameter.value -= eps[idx] return df_dp
[docs] def evaluate_error(self, energy, epsilon=1e-4): """Evaluate spectral model with error propagation. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to evaluate epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. Returns ------- dnde, dnde_error : tuple of `~astropy.units.Quantity` Tuple of flux and flux error. """ p_cov = self.parameters.covariance eps = np.sqrt(np.diag(self.parameters.covariance)) * epsilon df_dp = self._evaluate_gradient(energy, eps) f_cov = df_dp.T @ p_cov @ df_dp f_err = np.sqrt(np.diagonal(f_cov)) q = self(energy) return u.Quantity([q.value, f_err], unit=q.unit)
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate spectral model numerically. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE If array input for ``emin`` and ``emax`` is given you have to set ``intervals=True`` if you want the integral in each energy bin. Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to :func:`~gammapy.utils.integrate.integrate_spectrum` """ return integrate_spectrum(self, emin, emax, **kwargs)
[docs] def energy_flux(self, emin, emax, **kwargs): r"""Compute energy flux in given energy range. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to func:`~gammapy.utils.integrate.integrate_spectrum` """ def f(x): return x * self(x) return integrate_spectrum(f, emin, emax, **kwargs)
[docs] def plot( self, energy_range, ax=None, energy_unit="TeV", flux_unit="cm-2 s-1 TeV-1", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model curve. kwargs are forwarded to `matplotlib.pyplot.plot` By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:: from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel from astropy import units as u pwl = ExpCutoffPowerLawSpectralModel() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear') Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_range : `~astropy.units.Quantity` Plot range energy_unit : str, `~astropy.units.Unit`, optional Unit of the energy axis flux_unit : str, `~astropy.units.Unit`, optional Unit of the flux axis energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax emin, emax = energy_range energy = MapAxis.from_energy_bounds(emin, emax, n_points, energy_unit).edges # evaluate model flux = self(energy).to(flux_unit) y = self._plot_scale_flux(energy, flux, energy_power) ax.plot(energy.value, y.value, **kwargs) self._plot_format_ax(ax, energy, y, energy_power) return ax
[docs] def plot_error( self, energy_range, ax=None, energy_unit="TeV", flux_unit="cm-2 s-1 TeV-1", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model error band. .. note:: This method calls ``ax.set_yscale("log", nonposy='clip')`` and ``ax.set_xscale("log", nonposx='clip')`` to create a log-log representation. The additional argument ``nonposx='clip'`` avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623). When you call ``plt.loglog()`` or ``plt.semilogy()`` explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also use ``plt.loglog(nonposx='clip', nonposy='clip')`` or ``plt.semilogy(nonposy='clip')``. Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_range : `~astropy.units.Quantity` Plot range energy_unit : str, `~astropy.units.Unit`, optional Unit of the energy axis flux_unit : str, `~astropy.units.Unit`, optional Unit of the flux axis energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes **kwargs : dict Keyword arguments forwarded to `matplotlib.pyplot.fill_between` Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax kwargs.setdefault("facecolor", "black") kwargs.setdefault("alpha", 0.2) kwargs.setdefault("linewidth", 0) emin, emax = energy_range energy = MapAxis.from_energy_bounds(emin, emax, n_points, energy_unit).edges flux, flux_err = self.evaluate_error(energy).to(flux_unit) y_lo = self._plot_scale_flux(energy, flux - flux_err, energy_power) y_hi = self._plot_scale_flux(energy, flux + flux_err, energy_power) where = (energy >= energy_range[0]) & (energy <= energy_range[1]) ax.fill_between(energy.value, y_lo.value, y_hi.value, where=where, **kwargs) self._plot_format_ax(ax, energy, y_lo, energy_power) return ax
@staticmethod def _plot_format_ax(ax, energy, y, energy_power): ax.set_xlabel(f"Energy [{energy.unit}]") if energy_power > 0: ax.set_ylabel(f"E{energy_power} * Flux [{y.unit}]") else: ax.set_ylabel(f"Flux [{y.unit}]") ax.set_xscale("log", nonposx="clip") ax.set_yscale("log", nonposy="clip") @staticmethod def _plot_scale_flux(energy, flux, energy_power): try: eunit = [_ for _ in flux.unit.bases if _.physical_type == "energy"][0] except IndexError: eunit = energy.unit y = flux * np.power(energy, energy_power) return y.to(flux.unit * eunit ** energy_power)
[docs] def spectral_index(self, energy, epsilon=1e-5): """Compute spectral index at given energy. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to estimate the index epsilon : float Fractional energy increment to use for determining the spectral index. Returns ------- index : float Estimated spectral index. """ f1 = self(energy) f2 = self(energy * (1 + epsilon)) return np.log(f1 / f2) / np.log(1 + epsilon)
[docs] def inverse(self, value, emin=0.1 * u.TeV, emax=100 * u.TeV): """Return energy for a given function value of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. emin : `~astropy.units.Quantity` Lower bracket value in case solution is not unique. emax : `~astropy.units.Quantity` Upper bracket value in case solution is not unique. Returns ------- energy : `~astropy.units.Quantity` Energies at which the model has the given ``value``. """ eunit = "TeV" energies = [] for val in np.atleast_1d(value): def f(x): # scale by 1e12 to achieve better precision energy = u.Quantity(x, eunit, copy=False) y = self(energy).to_value(value.unit) return 1e12 * (y - val.value) energy = scipy.optimize.brentq( f, emin.to_value(eunit), emax.to_value(eunit) ) energies.append(energy) return u.Quantity(energies, eunit, copy=False)
[docs]class ConstantSpectralModel(SpectralModel): r"""Constant model. .. math:: \phi(E) = k Parameters ---------- const : `~astropy.units.Quantity` :math:`k` """ tag = "ConstantSpectralModel" const = Parameter("const", "1e-12 cm-2 s-1 TeV-1")
[docs] @staticmethod def evaluate(energy, const): """Evaluate the model (static function).""" return np.ones(np.atleast_1d(energy).shape) * const
[docs]class CompoundSpectralModel(SpectralModel): """Arithmetic combination of two spectral models. Itself again a spectral model. """ tag = "CompoundSpectralModel" def __init__(self, model1, model2, operator): self.model1 = model1 self.model2 = model2 self.operator = operator super().__init__() @property def parameters(self): return self.model1.parameters + self.model2.parameters def __str__(self): return ( f"{self.__class__.__name__}\n" f" Component 1 : {self.model1}\n" f" Component 2 : {self.model2}\n" f" Operator : {self.operator}\n" )
[docs] def __call__(self, energy): val1 = self.model1(energy) val2 = self.model2(energy) return self.operator(val1, val2)
[docs] def to_dict(self): return { "model1": self.model1.to_dict(), "model2": self.model2.to_dict(), "operator": self.operator, }
[docs]class PowerLawSpectralModel(SpectralModel): r"""Spectral power-law model. .. math:: \phi(E) = \phi_0 \cdot \left( \frac{E}{E_0} \right)^{-\Gamma} Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` """ tag = "PowerLawSpectralModel" index = Parameter("index", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference): """Evaluate the model (static function).""" return amplitude * np.power((energy / reference), -index)
[docs] @staticmethod def evaluate_integral(emin, emax, index, amplitude, reference): """Evaluate the model integral (static function).""" val = -1 * index + 1 prefactor = amplitude * reference / val upper = np.power((emax / reference), val) lower = np.power((emin / reference), val) integral = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): integral[mask] = (amplitude * reference * np.log(emax / emin))[mask] return integral
[docs] @staticmethod def evaluate_energy_flux(emin, emax, index, amplitude, reference): """Evaluate the energy flux (static function)""" val = -1 * index + 2 prefactor = amplitude * reference ** 2 / val upper = (emax / reference) ** val lower = (emin / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = amplitude * reference ** 2 * np.log(emax / emin)[mask] return energy_flux
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range """ kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, emin) return self.evaluate_integral(emin=emin, emax=emax, **kwargs)
[docs] def energy_flux(self, emin, emax): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, emin) return self.evaluate_energy_flux(emin=emin, emax=emax, **kwargs)
[docs] def inverse(self, value): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ p = self.parameters base = value / p["amplitude"].quantity return p["reference"].quantity * np.power(base, -1.0 / p["index"].value)
@property def pivot_energy(self): r"""The decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf """ index_err = self.parameters.error("index") reference = self.reference.quantity amplitude = self.amplitude.quantity cov_index_ampl = self.parameters.covariance[0, 1] * amplitude.unit return reference * np.exp(cov_index_ampl / (amplitude * index_err ** 2))
[docs]class PowerLaw2SpectralModel(SpectralModel): r"""Spectral power-law model with integral as amplitude parameter. See also: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html .. math:: \phi(E) = F_0 \cdot \frac{\Gamma + 1}{E_{0, max}^{-\Gamma + 1} - E_{0, min}^{-\Gamma + 1}} \cdot E^{-\Gamma} Parameters ---------- index : `~astropy.units.Quantity` Spectral index :math:`\Gamma` amplitude : `~astropy.units.Quantity` Integral flux :math:`F_0`. emin : `~astropy.units.Quantity` Lower energy limit :math:`E_{0, min}`. emax : `~astropy.units.Quantity` Upper energy limit :math:`E_{0, max}`. """ tag = "PowerLaw2SpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1") index = Parameter("index", 2) emin = Parameter("emin", "0.1 TeV", frozen=True) emax = Parameter("emax", "100 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, amplitude, index, emin, emax): """Evaluate the model (static function).""" top = -index + 1 # to get the energies dimensionless we use a modified formula bottom = emax - emin * (emin / emax) ** (-index) return amplitude * (top / bottom) * np.power(energy / emax, -index)
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ pars = self.parameters temp1 = np.power(emax, -pars["index"].value + 1) temp2 = np.power(emin, -pars["index"].value + 1) top = temp1 - temp2 temp1 = np.power(pars["emax"].quantity, -pars["index"].value + 1) temp2 = np.power(pars["emin"].quantity, -pars["index"].value + 1) bottom = temp1 - temp2 return pars["amplitude"].quantity * top / bottom
[docs] def inverse(self, value): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ p = self.parameters amplitude, index, emin, emax = ( p["amplitude"].quantity, p["index"].value, p["emin"].quantity, p["emax"].quantity, ) # to get the energies dimensionless we use a modified formula top = -index + 1 bottom = emax - emin * (emin / emax) ** (-index) term = (bottom / top) * (value / amplitude) return np.power(term.to_value(""), -1.0 / index) * emax
[docs]class ExpCutoffPowerLawSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model. .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(- {(\lambda E})^{\alpha}) Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` lambda_ : `~astropy.units.Quantity` :math:`\lambda` alpha : `~astropy.units.Quantity` :math:`\alpha` """ tag = "ExpCutoffPowerLawSpectralModel" index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = \left(\frac{2 - \Gamma}{\alpha}\right)^{1/\alpha} / \lambda """ p = self.parameters reference = p["reference"].quantity index = p["index"].quantity lambda_ = p["lambda_"].quantity alpha = p["alpha"].quantity if index >= 2 or lambda_ == 0.0 or alpha == 0.0: return np.nan * reference.unit else: return np.power((2 - index) / alpha, 1 / alpha) / lambda_
[docs]class ExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model used for 3FGL. Note that the parametrization is different from `ExpCutoffPowerLawSpectralModel`: .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp \left( \frac{E_0 - E}{E_{C}} \right) Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = "ExpCutoffPowerLaw3FGLSpectralModel" index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV")
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, ecut): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp((reference - energy) / ecut) return pwl * cutoff
[docs]class SuperExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 3FGL. .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( \left(\frac{E_0}{E_{C}} \right)^{\Gamma_2} - \left(\frac{E}{E_{C}} \right)^{\Gamma_2} \right) Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = "SuperExpCutoffPowerLaw3FGLSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, ecut, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp((reference / ecut) ** index_2 - (energy / ecut) ** index_2) return pwl * cutoff
[docs]class SuperExpCutoffPowerLaw4FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 4FGL. This model parametrisation is very similar, but slightly different from `SuperExpCutoffPowerLaw3FGLSpectralModel` or `ExpCutoffPowerLaw3FGLSpectralModel`. See Equation (3) in https://arxiv.org/pdf/1902.10045.pdf .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( a \left( E_0 ^{\Gamma_2} - E^{\Gamma_2} \right) \right) Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` expfactor : `~astropy.units.Quantity` :math:`a`, given as dimensionless value but internally assumes unit of :math:`[E_0]` power :math:`-\Gamma_2` """ tag = "SuperExpCutoffPowerLaw4FGLSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) expfactor = Parameter("expfactor", "1e-2") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, expfactor, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp( expfactor / reference.unit ** index_2 * (reference ** index_2 - energy ** index_2) ) return pwl * cutoff
[docs]class LogParabolaSpectralModel(SpectralModel): r"""Spectral log parabola model. .. math:: \phi(E) = \phi_0 \left( \frac{E}{E_0} \right) ^ { - \alpha - \beta \log{ \left( \frac{E}{E_0} \right) } } Note that :math:`log` refers to the natural logarithm. This is consistent with the `Fermi Science Tools <https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html>`_ and `ctools <http://cta.irap.omp.eu/ctools-devel/users/user_manual/getting_started/models.html#log-parabola>`_. The `Sherpa <http://cxc.harvard.edu/sherpa/ahelp/logparabola.html_ package>`_ package, however, uses :math:`log_{10}`. If you have parametrization based on :math:`log_{10}` you can use the :func:`~gammapy.modeling.models.LogParabolaSpectralModel.from_log10` method. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` alpha : `~astropy.units.Quantity` :math:`\alpha` beta : `~astropy.units.Quantity` :math:`\beta` """ tag = "LogParabolaSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 2) beta = Parameter("beta", 1)
[docs] @classmethod def from_log10(cls, amplitude, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(amplitude=amplitude, reference=reference, alpha=alpha, beta=beta_)
[docs] @staticmethod def evaluate(energy, amplitude, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return amplitude * np.power(xx, exponent)
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = E_{0} \exp{ (2 - \alpha) / (2 * \beta)} """ p = self.parameters reference = p["reference"].quantity alpha = p["alpha"].quantity beta = p["beta"].quantity return reference * np.exp((2 - alpha) / (2 * beta))
[docs]class TemplateSpectralModel(SpectralModel): """A model generated from a table of energy and value arrays. the units returned will be the units of the values array provided at initialization. The model will return values interpolated in log-space, returning 0 for energies outside of the limits of the provided energy array. Class implementation follows closely what has been done in `naima.models.TemplateSpectralModel` Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given values : array Array with the values of the model at energies ``energy``. norm : float Model scale that is multiplied to the supplied arrays. Defaults to 1. interp_kwargs : dict Interpolation keyword arguments pass to `scipy.interpolate.interp1d`. By default all values outside the interpolation range are set to zero. If you want to apply linear extrapolation you can pass `interp_kwargs={'fill_value': 'extrapolate', 'kind': 'linear'}`. If you want to choose the interpolation scaling applied to values, you can use `interp_kwargs={"values_scale": "log"}`. meta : dict, optional Meta information, meta['filename'] will be used for serialization """ tag = "TemplateSpectralModel" norm = Parameter("norm", 1, unit="") tilt = Parameter("tilt", 0, unit="", frozen=True) reference = Parameter("reference", "1 TeV", frozen=True) def __init__( self, energy, values, norm=norm.quantity, tilt=tilt.quantity, reference=reference.quantity, interp_kwargs=None, meta=None, ): self.energy = energy self.values = values self.meta = dict() if meta is None else meta interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("points_scale", ("log",)) self._evaluate = ScaledRegularGridInterpolator( points=(energy,), values=values, **interp_kwargs ) super().__init__(norm=norm, tilt=tilt, reference=reference)
[docs] @classmethod def read_xspec_model(cls, filename, param, **kwargs): """Read XSPEC table model. The input is a table containing absorbed values from a XSPEC model as a function of energy. TODO: Format of the file should be described and discussed in https://gamma-astro-data-formats.readthedocs.io/en/latest/index.html Parameters ---------- filename : str File containing the XSPEC model param : float Model parameter value Examples -------- Fill table from an EBL model (Franceschini, 2008) >>> from gammapy.modeling.models import TemplateSpectralModel >>> filename = '$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz' >>> table_model = TemplateSpectralModel.read_xspec_model(filename=filename, param=0.3) """ filename = make_path(filename) # Check if parameter value is in range table_param = Table.read(filename, hdu="PARAMETERS") pmin = table_param["MINIMUM"] pmax = table_param["MAXIMUM"] if param < pmin or param > pmax: raise ValueError(f"Out of range: param={param}, min={pmin}, max={pmax}") # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = table_energy["ENERG_LO"] energy_hi = table_energy["ENERG_HI"] # set energy to log-centers energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values (no interpolation, take closest value for param) table_spectra = Table.read(filename, hdu="SPECTRA") idx = np.abs(table_spectra["PARAMVAL"] - param).argmin() values = u.Quantity(table_spectra[idx][1], "", copy=False) # no dimension kwargs.setdefault("interp_kwargs", {"values_scale": "lin"}) return cls(energy=energy, values=values, **kwargs)
[docs] def evaluate(self, energy, norm, tilt, reference): """Evaluate the model (static function).""" values = self._evaluate((energy,), clip=True) tilt_factor = np.power(energy / reference, -tilt) return norm * values * tilt_factor
[docs] def to_dict(self): return { "type": self.tag, "parameters": self.parameters.to_dict()["parameters"], "energy": { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), }, "values": { "data": self.values.data.tolist(), "unit": str(self.values.unit), }, }
[docs] @classmethod def from_dict(cls, data): energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) model = cls(energy=energy, values=values) model._update_from_dict(data) return model
[docs]class ScaleSpectralModel(SpectralModel): """Wrapper to scale another spectral model by a norm factor. Parameters ---------- model : `SpectralModel` Spectral model to wrap. norm : float Multiplicative norm factor for the model value. """ tag = "ScaleSpectralModel" norm = Parameter("norm", 1, unit="") def __init__(self, model, norm=norm.quantity): self.model = model super().__init__(norm=norm)
[docs] def evaluate(self, energy, norm): return norm * self.model(energy)
[docs]class Absorption: r"""Gamma-ray absorption models. Usually used as part of `AbsorbedSpectralModel`. Parameters ---------- energy : `~astropy.units.Quantity` Energy node values param : `~astropy.units.Quantity` Parameter node values data : `~astropy.units.Quantity` Model value """ tag = "Absorption" def __init__(self, energy, param, data, filename=None, interp_kwargs=None): self.data = data self.filename = filename # set values log centers self.param = param self.energy = energy interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("points_scale", ("log", "lin")) self._evaluate = ScaledRegularGridInterpolator( points=(self.param, self.energy), values=data, **interp_kwargs )
[docs] def to_dict(self): if self.filename is None: return { "type": self.tag, "energy": { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), }, "param": { "data": self.param.data.tolist(), "unit": str(self.param.unit), }, "values": { "data": self.data.data.tolist(), "unit": str(self.data.unit), }, } else: return {"type": self.tag, "filename": self.filename}
[docs] @classmethod def from_dict(cls, data): if "filename" in data: return cls.read(data["filename"]) else: energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) param = u.Quantity(data["param"]["data"], data["param"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls(energy=energy, param=param, data=values)
[docs] @classmethod def read(cls, filename): """Build object from an XSPEC model. Todo: Format of XSPEC binary files should be referenced at https://gamma-astro-data-formats.readthedocs.io/en/latest/ Parameters ---------- filename : str File containing the model. """ # Create EBL data array filename = make_path(filename) table_param = Table.read(filename, hdu="PARAMETERS") # TODO: for some reason the table contain duplicated values param, idx = np.unique(table_param[0]["VALUE"], return_index=True) # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = u.Quantity( table_energy["ENERG_LO"], "keV", copy=False ) # unit not stored in file energy_hi = u.Quantity( table_energy["ENERG_HI"], "keV", copy=False ) # unit not stored in file energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values table_spectra = Table.read(filename, hdu="SPECTRA") data = table_spectra["INTPSPEC"].data[idx, :] return cls(energy=energy, param=param, data=data, filename=filename)
[docs] @classmethod def read_builtin(cls, name): """Read one of the built-in absorption models. Parameters ---------- name : {'franceschini', 'dominguez', 'finke'} name of one of the available model in gammapy-data References ---------- .. [1] Franceschini et al., "Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity", `Link <https://ui.adsabs.harvard.edu/abs/2008A%26A...487..837F>`__ .. [2] Dominguez et al., " Extragalactic background light inferred from AEGIS galaxy-SED-type fractions" `Link <https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.2556D>`__ .. [3] Finke et al., "Modeling the Extragalactic Background Light from Stars and Dust" `Link <https://ui.adsabs.harvard.edu/abs/2010ApJ...712..238F>`__ """ models = dict() models["franceschini"] = "$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz" models["dominguez"] = "$GAMMAPY_DATA/ebl/ebl_dominguez11.fits.gz" models["finke"] = "$GAMMAPY_DATA/ebl/frd_abs.fits.gz" return cls.read(models[name])
[docs] def table_model(self, parameter): """Table model for a given parameter (`~gammapy.modeling.models.TemplateSpectralModel`). Parameters ---------- parameter : float Parameter value. """ energy = self.energy values = self.evaluate(energy=energy, parameter=parameter) return TemplateSpectralModel( energy=energy, values=values, interp_kwargs={"values_scale": "log"} )
[docs] def evaluate(self, energy, parameter): """Evaluate model for energy and parameter value.""" return self._evaluate((parameter, energy))
[docs]class AbsorbedSpectralModel(SpectralModel): r"""Spectral model with EBL absorption. The spectral model is evaluated, and then multiplied with an EBL absorption factor given by .. math:: \exp{ \left ( -\alpha \times \tau(E, z) \right )} where :math:`\tau(E, z)` is the optical depth predicted by the model (`Absorption`), which depends on the energy of the gamma-rays and the redshift z of the source, and :math:`\alpha` is a scale factor (default: 1) for the optical depth. Parameters ---------- spectral_model : `SpectralModel` Spectral model. absorption : `Absorption` Absorption model. parameter : float parameter value for absorption model parameter_name : str, optional parameter name alpha_norm: float Norm of the EBL model """ tag = "AbsorbedSpectralModel" def __init__( self, spectral_model, absorption, parameter, parameter_name="redshift", alpha_norm=1.0, ): self.spectral_model = spectral_model self.absorption = absorption self.parameter = parameter self.parameter_name = parameter_name min_ = self.absorption.param.min() max_ = self.absorption.param.max() par = Parameter(parameter_name, parameter, min=min_, max=max_, frozen=True) alpha_norm = Parameter("alpha_norm", alpha_norm, frozen=True) parameters = Parameters([par, alpha_norm]) super()._init_from_parameters(parameters) @property def parameters(self): return self._parameters + self.spectral_model.parameters
[docs] def evaluate(self, energy, **kwargs): """Evaluate the model at a given energy.""" # assign redshift value and remove it from dictionary # since it does not belong to the spectral model parameter = kwargs[self.parameter_name] del kwargs[self.parameter_name] del kwargs["alpha_norm"] dnde = self.spectral_model.evaluate(energy=energy, **kwargs) absorption = self.absorption.evaluate(energy=energy, parameter=parameter) # Power rule: (e ^ a) ^ b = e ^ (a * b) absorption = np.power(absorption, self.alpha_norm.value) return dnde * absorption
[docs] def to_dict(self): return { "type": self.tag, "base_model": self.spectral_model.to_dict(), "absorption": self.absorption.to_dict(), "absorption_parameter": { "name": self.parameter_name, "value": self.parameter, }, "parameters": self._parameters.to_dict()["parameters"], }
[docs] @classmethod def from_dict(cls, data): from gammapy.modeling.models import SPECTRAL_MODELS model_class = SPECTRAL_MODELS.get_cls(data["base_model"]["type"]) model = cls( spectral_model=model_class.from_dict(data["base_model"]), absorption=Absorption.from_dict(data["absorption"]), parameter=data["absorption_parameter"]["value"], parameter_name=data["absorption_parameter"]["name"], ) model._update_from_dict(data) return model
[docs]class NaimaSpectralModel(SpectralModel): r"""A wrapper for Naima models. This class provides an interface with the models defined in the `~naima.models` module. The model accepts as a positional argument a `Naima <https://naima.readthedocs.io/en/latest/>`_ radiative model instance, used to compute the non-thermal emission from populations of relativistic electrons or protons due to interactions with the ISM or with radiation and magnetic fields. One of the advantages provided by this class consists in the possibility of performing a maximum likelihood spectral fit of the model's parameters directly on observations, as opposed to the MCMC `fit to flux points <https://naima.readthedocs.io/en/latest/mcmc.html>`_ featured in Naima. All the parameters defining the parent population of charged particles are stored as `~gammapy.modeling.Parameter` and left free by default. In case that the radiative model is ` ~naima.radiative.Synchrotron`, the magnetic field strength may also be fitted. Parameters can be freezed/unfreezed before the fit, and maximum/minimum values can be set to limit the parameters space to the physically interesting region. Parameters ---------- radiative_model : `~naima.models.BaseRadiative` An instance of a radiative model defined in `~naima.models` distance : `~astropy.units.Quantity`, optional Distance to the source. If set to 0, the intrinsic differential luminosity will be returned. Default is 1 kpc seed : str or list of str, optional Seed photon field(s) to be considered for the `radiative_model` flux computation, in case of a `~naima.models.InverseCompton` model. It can be a subset of the `seed_photon_fields` list defining the `radiative_model`. Default is the whole list of photon fields """ tag = "NaimaSpectralModel" def __init__(self, radiative_model, distance=1.0 * u.kpc, seed=None): import naima self.radiative_model = radiative_model self._particle_distribution = self.radiative_model.particle_distribution self.distance = u.Quantity(distance) self.seed = seed if isinstance(self._particle_distribution, naima.models.TableModel): param_names = ["amplitude"] else: param_names = self._particle_distribution.param_names parameters = [] for name in param_names: value = getattr(self._particle_distribution, name) parameter = Parameter(name, value) parameters.append(parameter) # In case of a synchrotron radiative model, append B to the fittable parameters if "B" in self.radiative_model.param_names: value = getattr(self.radiative_model, "B") parameter = Parameter("B", value) parameters.append(parameter) super()._init_from_parameters(parameters)
[docs] def evaluate(self, energy, **kwargs): """Evaluate the model.""" for name, value in kwargs.items(): setattr(self._particle_distribution, name, value) # Flattening the input energy list and later reshaping the flux list # prevents some radiative models from displaying broadcasting problems. if self.seed is None: dnde = self.radiative_model.flux(energy.flatten(), distance=self.distance) else: dnde = self.radiative_model.flux( energy.flatten(), seed=self.seed, distance=self.distance ) dnde = dnde.reshape(energy.shape) unit = 1 / (energy.unit * u.cm ** 2 * u.s) return dnde.to(unit)
[docs]class GaussianSpectralModel(SpectralModel): r"""Gaussian spectral model. .. math:: \phi(E) = \frac{N_0}{\sigma \sqrt{2\pi}} \exp{ \frac{- \left( E-\bar{E} \right)^2 }{2 \sigma^2} } Parameters ---------- norm : `~astropy.units.Quantity` :math:`N_0` mean : `~astropy.units.Quantity` :math:`\bar{E}` sigma : `~astropy.units.Quantity` :math:`\sigma` """ tag = "GaussianSpectralModel" norm = Parameter("norm", 1e-12 * u.Unit("cm-2 s-1")) mean = Parameter("mean", 1 * u.TeV) sigma = Parameter("sigma", 2 * u.TeV)
[docs] @staticmethod def evaluate(energy, norm, mean, sigma): return ( norm / (sigma * np.sqrt(2 * np.pi)) * np.exp(-((energy - mean) ** 2) / (2 * sigma ** 2)) )
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate Gaussian analytically. .. math:: F(E_{min}, E_{max}) = \frac{N_0}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma})\right]_{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range """ # kwargs are passed to this function but not used # this is to get a consistent API with SpectralModel.integral() pars = self.parameters u_min = ( (emin - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") u_max = ( (emax - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") return ( pars["norm"].quantity / 2 * (scipy.special.erf(u_max) - scipy.special.erf(u_min)) )
[docs] def energy_flux(self, emin, emax): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \frac{N_0 \sigma}{\sqrt{2*\pi}}* \left[ - \exp(\frac{E_{min}-\bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} + \frac{N_0 * \bar{E}}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ pars = self.parameters u_min = ( (emin - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") u_max = ( (emax - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") a = pars["norm"].quantity * pars["sigma"].quantity / np.sqrt(2 * np.pi) b = pars["norm"].quantity * pars["mean"].quantity / 2 return a * (np.exp(-(u_min ** 2)) - np.exp(-(u_max ** 2))) + b * ( scipy.special.erf(u_max) - scipy.special.erf(u_min) )