ScaleSpectralModel¶
-
class
gammapy.modeling.models.ScaleSpectralModel(model, norm=<Quantity 1.>)[source]¶ Bases:
gammapy.modeling.models.SpectralModelWrapper to scale another spectral model by a norm factor.
- Parameters
- model
SpectralModel Spectral model to wrap.
- normfloat
Multiplicative norm factor for the model value.
- model
Attributes Summary
A model parameter.
Parameters (
Parameters)Methods Summary
__call__(self, energy)Call self as a function.
copy(self)A deep copy.
create(tag, \*args, \*\*kwargs)Create a model instance.
energy_flux(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range.
evaluate(self, energy, norm)evaluate_error(self, energy[, epsilon])Evaluate spectral model with error propagation.
from_dict(data)integral(self, emin, emax, \*\*kwargs)Integrate spectral model numerically.
inverse(self, value[, emin, emax])Return energy for a given function value of the spectral model.
plot(self, energy_range[, ax, energy_unit, …])Plot spectral model curve.
plot_error(self, energy_range[, ax, …])Plot spectral model error band.
spectral_index(self, energy[, epsilon])Compute spectral index at given energy.
to_dict(self)Create dict for YAML serialisation
Attributes Documentation
-
default_parameters= <gammapy.modeling.parameter.Parameters object>¶
-
norm¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters¶ Parameters (
Parameters)
-
tag= 'ScaleSpectralModel'¶
Methods Documentation
-
__call__(self, energy)¶ Call self as a function.
-
copy(self)¶ A deep copy.
-
static
create(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
energy_flux(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]- Parameters
- emin, emax
Quantity Lower and upper bound of integration range.
- **kwargsdict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax
-
evaluate_error(self, energy, epsilon=0.0001)¶ Evaluate spectral model with error propagation.
-
classmethod
from_dict(data)¶
-
integral(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
eminandemaxis given you have to setintervals=Trueif you want the integral in each energy bin.- Parameters
- emin, emax
Quantity Lower and upper bound of integration range.
- **kwargsdict
Keyword arguments passed to
integrate_spectrum()
- emin, emax
-
inverse(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentqnumerical root finding method.
-
plot(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plotBy default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel from astropy import units as u pwl = ExpCutoffPowerLawSpectralModel() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
- Parameters
- Returns
- ax
Axes, optional Axis
- ax
-
plot_error(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')andax.set_xscale("log", nonposx='clip')to create a log-log representation. The additional argumentnonposx='clip'avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()orplt.semilogy()explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')orplt.semilogy(nonposy='clip').- Parameters
- ax
Axes, optional Axis
- energy_range
Quantity Plot range
- energy_unitstr,
Unit, optional Unit of the energy axis
- flux_unitstr,
Unit, optional Unit of the flux axis
- energy_powerint, optional
Power of energy to multiply flux axis with
- n_pointsint, optional
Number of evaluation nodes
- **kwargsdict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
- ax
- Returns
- ax
Axes, optional Axis
- ax
-
spectral_index(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
- Parameters
- energy
Quantity Energy at which to estimate the index
- epsilonfloat
Fractional energy increment to use for determining the spectral index.
- energy
- Returns
- indexfloat
Estimated spectral index.
-
to_dict(self)¶ Create dict for YAML serialisation