DiskSpatialModel¶
-
class
gammapy.modeling.models.
DiskSpatialModel
(**kwargs)[source]¶ Bases:
gammapy.modeling.models.SpatialModel
Constant disk model.
By default, the model is symmetric, i.e. a disk:
\[\begin{split}\phi(lon, lat) = \frac{1}{2 \pi (1 - \cos{r_0}) } \cdot \begin{cases} 1 & \text{for } \theta \leq r_0 \\ 0 & \text{for } \theta > r_0 \end{cases}\end{split}\]where \(\theta\) is the sky separation. To improve fit convergence of the model, the sharp edges is smoothed using
erf
.In case an eccentricity (
e
) and rotation angle (\(\phi\)) are passed, then the model is an elongated disk (i.e. an ellipse), with a major semiaxis of length \(r_0\) and position angle \(\phi\) (increaing counter-clockwise from the North direction).The model is defined on the celestial sphere, with a normalization defined by:
\[\int_{4\pi}\phi(\text{lon}, \text{lat}) \,d\Omega = 1\,.\]- Parameters
- lon_0, lat_0
Angle
Center position
- r_0
Angle
\(a\): length of the major semiaxis, in angular units.
- e
float
Eccentricity of the ellipse (\(0< e< 1\)).
- phi
Angle
Rotation angle \(\phi\): of the major semiaxis. Increases counter-clockwise from the North direction.
- edge
Angle
Width of the edge. The width is defined as the range within the smooth edges of the model drops from 95% to 5% of its amplitude.
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
A model parameter.
A model parameter.
Evaluation radius (
Angle
).A model parameter.
A model parameter.
Parameters (
Parameters
)A model parameter.
Spatial model center position
Get 95% containment position error as (
EllipseSkyRegion
)A model parameter.
Methods Summary
__call__
(self, lon, lat)Call evaluate method
copy
(self)A deep copy.
create
(tag, \*args, \*\*kwargs)Create a model instance.
evaluate
(lon, lat, lon_0, lat_0, r_0, e, …)Evaluate model.
evaluate_geom
(self, geom)Evaluate model on
Geom
.from_dict
(data)to_dict
(self)Create dict for YAML serilisation
to_region
(self, \*\*kwargs)Model outline (
EllipseSkyRegion
).Attributes Documentation
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
e
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
edge
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
lat_0
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
lon_0
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters
¶ Parameters (
Parameters
)
-
phi
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
phi_0
¶
-
position
¶ Spatial model center position
-
position_error
¶ Get 95% containment position error as (
EllipseSkyRegion
)
-
r_0
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
tag
= 'DiskSpatialModel'¶
Methods Documentation
-
__call__
(self, lon, lat)¶ Call evaluate method
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
from_dict
(data)¶
-
to_dict
(self)¶ Create dict for YAML serilisation
-
to_region
(self, **kwargs)[source]¶ Model outline (
EllipseSkyRegion
).