PointSpatialModel¶
-
class
gammapy.modeling.models.PointSpatialModel(**kwargs)[source]¶ Bases:
gammapy.modeling.models.SpatialModelPoint Source.
\[\phi(lon, lat) = \delta{(lon - lon_0, lat - lat_0)}\]- Parameters
- lon_0, lat_0
Angle Center position
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
Evaluation radius (
Angle).A model parameter.
A model parameter.
Parameters (
Parameters)Spatial model center position
Get 95% containment position error as (
EllipseSkyRegion)Methods Summary
__call__(self, lon, lat)Call evaluate method
copy(self)A deep copy.
create(tag, \*args, \*\*kwargs)Create a model instance.
evaluate_geom(self, geom)Evaluate model on
Geom.from_dict(data)to_dict(self)Create dict for YAML serilisation
to_region(self, \*\*kwargs)Model outline (
PointSkyRegion).Attributes Documentation
-
default_parameters= <gammapy.modeling.parameter.Parameters object>¶
-
lat_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
lon_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters¶ Parameters (
Parameters)
-
phi_0¶
-
position¶ Spatial model center position
-
position_error¶ Get 95% containment position error as (
EllipseSkyRegion)
-
tag= 'PointSpatialModel'¶
Methods Documentation
-
__call__(self, lon, lat)¶ Call evaluate method
-
copy(self)¶ A deep copy.
-
static
create(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
from_dict(data)¶
-
to_dict(self)¶ Create dict for YAML serilisation
-
to_region(self, **kwargs)[source]¶ Model outline (
PointSkyRegion).