SpectrumDatasetOnOff

class gammapy.spectrum.SpectrumDatasetOnOff(models=None, counts=None, counts_off=None, livetime=None, aeff=None, edisp=None, mask_safe=None, mask_fit=None, acceptance=None, acceptance_off=None, name='', gti=None)[source]

Bases: gammapy.spectrum.SpectrumDataset

Spectrum dataset for on-off likelihood fitting.

The on-off spectrum dataset bundles reduced counts data, off counts data, with a spectral model, relative background efficiency and instrument response functions to compute the fit-statistic given the current model and data.

Parameters
modelsSkyModels

Fit model

countsCountsSpectrum

ON Counts spectrum

counts_offCountsSpectrum

OFF Counts spectrum

livetimeQuantity

Livetime

aeffEffectiveAreaTable

Effective area

edispEnergyDispersion

Energy dispersion

mask_safearray

Mask defining the safe data range.

mask_fitarray

Mask to apply to the likelihood for fitting.

acceptancearray or float

Relative background efficiency in the on region.

acceptance_offarray or float

Relative background efficiency in the off region.

namestr

Name of the dataset.

gtiGTI

GTI of the observation or union of GTI if it is a stacked observation

See also

SpectrumDataset, FluxPointsDataset, MapDataset

Attributes Summary

alpha

Exposure ratio between signal and background regions

background

data_shape

Shape of the counts data

energy_range

Energy range defined by the safe mask

excess

Excess (counts - alpha * counts_off)

likelihood_type

mask

Combined fit and safe mask

mask_safe

models

Models (gammapy.modeling.models.SkyModels).

parameters

List of parameters (Parameters)

tag

Methods Summary

copy(self)

A deep copy.

create(e_reco[, e_true, region, reference_time])

Create empty SpectrumDatasetOnOff.

fake(self, background_model[, random_state])

Simulate fake counts for the current model and reduced irfs.

from_dict(data, components, models)

Create flux point dataset from dict.

from_ogip_files(filename)

Read SpectrumDatasetOnOff from OGIP files.

info_dict(self[, in_safe_energy_range])

Info dict with summary statistics, summed over energy

npred(self)

Return npred map (model + background)

npred_sig(self)

Predicted counts from source model (CountsSpectrum).

peek(self[, figsize])

Quick-look summary plots.

plot_counts(self[, ax])

Plot predicted and detected counts.

plot_fit(self)

Plot counts and residuals in two panels.

plot_residuals(self[, method, ax])

Plot residuals.

read(filename)

Read from file

residuals(self[, method])

Compute the spectral residuals.

stack(self, other)

Stack this dataset with another one.

stat_array(self)

Likelihood per bin given the current model parameters

stat_sum(self)

Total statistic given the current model parameters.

to_dict(self, filename, \*args, \*\*kwargs)

Convert to dict for YAML serialization.

to_ogip_files(self[, outdir, use_sherpa, …])

Write OGIP files.

write(self, filename, overwrite)

Write spectrum dataset on off to file.

Attributes Documentation

alpha

Exposure ratio between signal and background regions

background
data_shape

Shape of the counts data

energy_range

Energy range defined by the safe mask

excess

Excess (counts - alpha * counts_off)

likelihood_type = 'wstat'
mask

Combined fit and safe mask

mask_safe
models

Models (gammapy.modeling.models.SkyModels).

parameters

List of parameters (Parameters)

tag = 'SpectrumDatasetOnOff'

Methods Documentation

copy(self)

A deep copy.

classmethod create(e_reco, e_true=None, region=None, reference_time='2000-01-01')[source]

Create empty SpectrumDatasetOnOff.

Empty containers are created with the correct geometry. counts, counts_off and aeff are zero and edisp is diagonal.

The safe_mask is set to False in every bin.

Parameters
e_recoQuantity

edges of counts vector

e_trueQuantity

edges of effective area table. If not set use reco energy values. Default : None

regionSkyRegion

Region to define the dataset for.

reference_timeTime

reference time of the dataset, Default is “2000-01-01”

fake(self, background_model, random_state='random-seed')[source]

Simulate fake counts for the current model and reduced irfs.

This method overwrites the counts and off counts defined on the dataset object.

Parameters
background_modelCountsSpectrum

BackgroundModel. In the future will be part of the SpectrumDataset Class. For the moment, a CountSpectrum.

random_state{int, ‘random-seed’, ‘global-rng’, RandomState}

Defines random number generator initialisation. Passed to get_random_state.

classmethod from_dict(data, components, models)[source]

Create flux point dataset from dict.

Parameters
datadict

Dict containing data to create dataset from.

componentslist of dict

Not used.

modelslist of SkyModel

List of model components.

Returns
datasetSpectrumDatasetOnOff

Spectrum dataset on off.

classmethod from_ogip_files(filename)[source]

Read SpectrumDatasetOnOff from OGIP files.

BKG file, ARF, and RMF must be set in the PHA header and be present in the same folder.

The naming scheme is fixed to the following scheme:

  • PHA file is named pha_obs{name}.fits

  • BKG file is named bkg_obs{name}.fits

  • ARF file is named arf_obs{name}.fits

  • RMF file is named rmf_obs{name}.fits with {name} the dataset name.

Parameters
filenamestr

OGIP PHA file to read

info_dict(self, in_safe_energy_range=True)[source]

Info dict with summary statistics, summed over energy

Parameters
in_safe_energy_rangebool

Whether to sum only in the safe energy range

Returns
info_dictdict

Dictionary with summary info.

npred(self)

Return npred map (model + background)

npred_sig(self)[source]

Predicted counts from source model (CountsSpectrum).

peek(self, figsize=(16, 4))[source]

Quick-look summary plots.

plot_counts(self, ax=None)

Plot predicted and detected counts.

Parameters
axAxes

Axes object.

Returns
axAxes

Axes object.

plot_fit(self)

Plot counts and residuals in two panels.

Calls plot_counts and plot_residuals.

plot_residuals(self, method='diff', ax=None, **kwargs)

Plot residuals.

Parameters
axAxes

Axes object.

method{“diff”, “diff/model”, “diff/sqrt(model)”}

Normalization used to compute the residuals, see SpectrumDataset.residuals()

**kwargsdict

Keywords passed to CountsSpectrum.plot()

Returns
axAxes

Axes object.

classmethod read(filename)[source]

Read from file

For now, filename is assumed to the name of a PHA file where BKG file, ARF, and RMF names must be set in the PHA header and be present in the same folder

Parameters
filenamestr

OGIP PHA file to read

residuals(self, method='diff')

Compute the spectral residuals.

Parameters
method{“diff”, “diff/model”, “diff/sqrt(model)”}
Method used to compute the residuals. Available options are:
  • diff (default): data - model

  • diff/model: (data - model) / model

  • diff/sqrt(model): (data - model) / sqrt(model)

Returns
residualsCountsSpectrum

Residual spectrum

stack(self, other)[source]

Stack this dataset with another one.

Safe mask is applied to compute the stacked counts vector. Counts outside each dataset safe mask are lost.

Stacking is performed in-place.

The stacking of 2 datasets is implemented as follows. Here, \(k\) denotes a bin in reconstructed energy and \(j = {1,2}\) is the dataset number

The mask_safe of each dataset is defined as:

\[\begin{split}\epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right.\end{split}\]

Then the total counts and counts_off are computed according to:

\[ \begin{align}\begin{aligned}\overline{\mathrm{n_{on}}}_k = \mathrm{n_{on}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{on}}_{2k} \cdot \epsilon_{2k}\\\overline{\mathrm{n_{off}}}_k = \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k}\end{aligned}\end{align} \]

The stacked safe_mask is then:

\[\overline{\epsilon_k} = \epsilon_{1k} OR \epsilon_{2k}\]

In each energy bin \(k\), the count excess is computed taking into account the ON acceptance, \(a_{on}_k\) and the OFF one: acceptance_off, \(a_{off}_k\). They define the \(\alpha_k=a_{on}_k/a_{off}_k\) factors such that \(n_{ex}_k = n_{on}_k - \alpha_k n_{off}_k\). We define the stacked value of \(\overline{{a}_{on}}_k = 1\) so that:

\[\overline{{a}_{off}}_k = \frac{\overline{\mathrm {n_{off}}}}{\alpha_{1k} \cdot \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \alpha_{2k} \cdot \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k}}\]

Please refer to the IRFStacker for the description of how the IRFs are stacked.

Parameters
otherSpectrumDatasetOnOff

the dataset to stack to the current one

Examples

>>> from gammapy.spectrum import SpectrumDatasetOnOff
>>> obs_ids = [23523, 23526, 23559, 23592]
>>> datasets = []
>>> for obs in obs_ids:
>>>     filename = "$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{}.fits"
>>>     ds = SpectrumDatasetOnOff.from_ogip_files(filename.format(obs))
>>>     datasets.append(ds)
>>> stacked = datasets[0]
>>> for ds in datasets[1:]:
>>>     stacked.stack(ds)
>>> print(stacked.livetime)
6313.8116406202325 s
stat_array(self)[source]

Likelihood per bin given the current model parameters

stat_sum(self)

Total statistic given the current model parameters.

to_dict(self, filename, *args, **kwargs)[source]

Convert to dict for YAML serialization.

to_ogip_files(self, outdir=None, use_sherpa=False, overwrite=False)[source]

Write OGIP files.

If you want to use the written files with Sherpa you have to set the use_sherpa flag. Then all files will be written in units ‘keV’ and ‘cm2’.

The naming scheme is fixed, with {name} the dataset name:

  • PHA file is named pha_obs{name}.fits

  • BKG file is named bkg_obs{name}.fits

  • ARF file is named arf_obs{name}.fits

  • RMF file is named rmf_obs{name}.fits

Parameters
outdirpathlib.Path

output directory, default: pwd

use_sherpabool, optional

Write Sherpa compliant files, default: False

overwritebool

Overwrite existing files?

write(self, filename, overwrite)[source]

Write spectrum dataset on off to file.

Currently only the OGIP format is supported

Parameters
filenamestr

Filename to write to.

overwritebool

Overwrite existing file.