Covariance#
- class gammapy.modeling.Covariance(parameters, data=None)[source]#
Bases:
objectParameter covariance class.
- Parameters:
- parameters
Parameters Parameter list.
- data
ndarray Covariance data array.
- parameters
Attributes Summary
Correlation matrix as a
numpy.ndarray.Covariance data as a
ndarray.Covariance shape.
Methods Summary
from_factor_matrix(parameters, matrix)Set covariance from factor covariance matrix.
from_stack(covar_list)Stack sub-covariance matrices from list.
get_subcovariance(parameters)Get sub-covariance matrix.
plot_correlation([figsize])Plot correlation matrix.
set_subcovariance(covar)Set sub-covariance matrix.
Attributes Documentation
- correlation#
Correlation matrix as a
numpy.ndarray.Correlation \(C\) is related to covariance \(\Sigma\) via:
\[C_{ij} = \frac{ \Sigma_{ij} }{ \sqrt{\Sigma_{ii} \Sigma_{jj}} }\]
- scipy_mvn#
- shape#
Covariance shape.
Methods Documentation
- classmethod from_factor_matrix(parameters, matrix)[source]#
Set covariance from factor covariance matrix.
Used in the optimizer interface.
- classmethod from_stack(covar_list)[source]#
Stack sub-covariance matrices from list.
- Parameters:
- covar_listlist of
Covariance List of sub-covariances.
- covar_listlist of
- Returns:
- covar
Covariance Stacked covariance.
- covar
- get_subcovariance(parameters)[source]#
Get sub-covariance matrix.
- Parameters:
- parameters
Parameters Sub list of parameters.
- parameters
- Returns:
- covariance
ndarray Sub-covariance.
- covariance
- plot_correlation(figsize=None, **kwargs)[source]#
Plot correlation matrix.
- Parameters:
- figsizetuple, optional
Figure size. Default is None, which takes (number_params*0.9, number_params*0.7).
- **kwargsdict
Keyword arguments passed to
plot_heatmap.
- Returns:
- ax
Axes, optional Matplotlib axes.
- ax
- set_subcovariance(covar)[source]#
Set sub-covariance matrix.
- Parameters:
- covar
Covariance Sub-covariance.
- covar