SineTemporalModel#
- class gammapy.modeling.models.SineTemporalModel(**kwargs)[source]#
Bases:
TemporalModelTemporal model with a sinusoidal modulation.
For more information see Sine temporal model.
- Parameters:
- ampfloat
Amplitude of the sinusoidal function. Default is 1.
- t_ref: `~astropy.units.Quantity`
The reference time in mjd. Default is 2000-01-01.
- omega: `~astropy.units.Quantity`
Pulsation of the signal. Default is 1 rad/day.
Attributes Summary
A model parameter.
Frozen status of a model, True if all parameters are frozen.
A model parameter.
Parameters as a
Parametersobject.Reference time in MJD.
A model parameter.
Methods Summary
__call__(time[, energy])Evaluate model.
copy(**kwargs)Deep copy.
evaluate(time, amp, omega, t_ref)Evaluate at given times.
freeze()Freeze all parameters.
from_dict(data, **kwargs)Create a temporal model from a dictionary.
from_parameters(parameters, **kwargs)Create model from parameter list.
integral(t_min, t_max)Evaluate the integrated flux within the given time intervals.
plot(time_range[, ax, n_points])Plot the temporal model.
reassign(datasets_names, new_datasets_names)Reassign a model from one dataset to another.
sample_time(n_events, t_min, t_max[, ...])Sample arrival times of events.
time_sum(t_min, t_max)Total time between t_min and t_max.
to_dict([full_output])Create dictionary for YAML serilisation.
unfreeze()Restore parameters frozen status to default.
Attributes Documentation
- amp#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit.
- minfloat, optional
Minimum (sometimes used in fitting).
- maxfloat, optional
Maximum (sometimes used in fitting).
- frozenbool, optional
Frozen (used in fitting).
- errorfloat
Parameter error.
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale.- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- prior
Prior Prior set on the parameter.
- covariance#
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- frozen#
Frozen status of a model, True if all parameters are frozen.
- is_energy_dependent#
- omega#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit.
- minfloat, optional
Minimum (sometimes used in fitting).
- maxfloat, optional
Maximum (sometimes used in fitting).
- frozenbool, optional
Frozen (used in fitting).
- errorfloat
Parameter error.
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale.- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- prior
Prior Prior set on the parameter.
- parameters#
Parameters as a
Parametersobject.
- parameters_unique_names#
- reference_time#
Reference time in MJD.
- t_ref#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit.
- minfloat, optional
Minimum (sometimes used in fitting).
- maxfloat, optional
Maximum (sometimes used in fitting).
- frozenbool, optional
Frozen (used in fitting).
- errorfloat
Parameter error.
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale.- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- prior
Prior Prior set on the parameter.
- tag = ['SineTemporalModel', 'sinus']#
- type#
Methods Documentation
- __call__(time, energy=None)#
Evaluate model.
- copy(**kwargs)#
Deep copy.
- freeze()#
Freeze all parameters.
- classmethod from_dict(data, **kwargs)#
Create a temporal model from a dictionary.
- Parameters:
- datadict
Dictionary containing the model parameters.
- **kwargsdict
Keyword arguments passed to
from_parameters.
- classmethod from_parameters(parameters, **kwargs)#
Create model from parameter list.
- Parameters:
- parameters
Parameters Parameters for init.
- parameters
- Returns:
- model
Model Model instance.
- model
- integral(t_min, t_max)[source]#
Evaluate the integrated flux within the given time intervals.
- Parameters:
- t_min: `~astropy.time.Time`
Start times of observation.
- t_max: `~astropy.time.Time`
Stop times of observation.
- Returns:
- normfloat
Integrated flux norm on the given time intervals.
- plot(time_range, ax=None, n_points=100, **kwargs)#
Plot the temporal model.
- reassign(datasets_names, new_datasets_names)#
Reassign a model from one dataset to another.
- Parameters:
- datasets_namesstr or list
Name of the datasets where the model is currently defined.
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns:
- model
Model Reassigned model.
- model
- sample_time(n_events, t_min, t_max, t_delta='1 s', random_state=0)#
Sample arrival times of events.
- Parameters:
- n_eventsint
Number of events to sample.
- t_min
Time Start time of the sampling.
- t_max
Time Stop time of the sampling.
- t_delta
Quantity, optional Time step used for sampling of the temporal model. Default is 1 s.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state. Default is 0.
- Returns:
- time
Quantity Array with times of the sampled events.
- time
- static time_sum(t_min, t_max)#
Total time between t_min and t_max.
- to_dict(full_output=False)#
Create dictionary for YAML serilisation.
- unfreeze()#
Restore parameters frozen status to default.