ConstantTemporalModel#
- class gammapy.modeling.models.ConstantTemporalModel(**kwargs)[source]#
Bases:
TemporalModelConstant temporal model.
For more information see Constant temporal model.
Attributes Summary
Frozen status of a model, True if all parameters are frozen.
Parameters as a
Parametersobject.Reference time in MJD.
Methods Summary
__call__(time[, energy])Evaluate model.
copy(**kwargs)Deep copy.
evaluate(time)Evaluate at given times.
freeze()Freeze all parameters.
from_dict(data, **kwargs)Create a temporal model from a dictionary.
from_parameters(parameters, **kwargs)Create model from parameter list.
integral(t_min, t_max)Evaluate the integrated flux within the given time intervals.
plot(time_range[, ax, n_points])Plot the temporal model.
reassign(datasets_names, new_datasets_names)Reassign a model from one dataset to another.
sample_time(n_events, t_min, t_max[, ...])Sample arrival times of events.
time_sum(t_min, t_max)Total time between t_min and t_max.
to_dict([full_output])Create dictionary for YAML serilisation.
unfreeze()Restore parameters frozen status to default.
Attributes Documentation
- covariance#
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- frozen#
Frozen status of a model, True if all parameters are frozen.
- is_energy_dependent#
- parameters#
Parameters as a
Parametersobject.
- parameters_unique_names#
- reference_time#
Reference time in MJD.
- tag = ['ConstantTemporalModel', 'const']#
- type#
Methods Documentation
- __call__(time, energy=None)#
Evaluate model.
- copy(**kwargs)#
Deep copy.
- freeze()#
Freeze all parameters.
- classmethod from_dict(data, **kwargs)#
Create a temporal model from a dictionary.
- Parameters:
- datadict
Dictionary containing the model parameters.
- **kwargsdict
Keyword arguments passed to
from_parameters.
- classmethod from_parameters(parameters, **kwargs)#
Create model from parameter list.
- Parameters:
- parameters
Parameters Parameters for init.
- parameters
- Returns:
- model
Model Model instance.
- model
- plot(time_range, ax=None, n_points=100, **kwargs)#
Plot the temporal model.
- reassign(datasets_names, new_datasets_names)#
Reassign a model from one dataset to another.
- Parameters:
- datasets_namesstr or list
Name of the datasets where the model is currently defined.
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns:
- model
Model Reassigned model.
- model
- sample_time(n_events, t_min, t_max, t_delta='1 s', random_state=0)#
Sample arrival times of events.
- Parameters:
- n_eventsint
Number of events to sample.
- t_min
Time Start time of the sampling.
- t_max
Time Stop time of the sampling.
- t_delta
Quantity, optional Time step used for sampling of the temporal model. Default is 1 s.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state. Default is 0.
- Returns:
- time
Quantity Array with times of the sampled events.
- time
- static time_sum(t_min, t_max)#
Total time between t_min and t_max.
- to_dict(full_output=False)#
Create dictionary for YAML serilisation.
- unfreeze()#
Restore parameters frozen status to default.