PointSpatialModel#
- class gammapy.modeling.models.PointSpatialModel(**kwargs)[source]#
Bases:
SpatialModelPoint Source.
For more information see Point spatial model.
- Parameters:
- lon_0, lat_0
Angle Center position. Default is “0 deg”, “0 deg”.
- frame{“icrs”, “galactic”}
Center position coordinate frame.
- lon_0, lat_0
Attributes Summary
Minimal evaluation bin size as an
Angle.Evaluation radius as an
Angle.Evaluation region.
Frozen status of a model, True if all parameters are frozen.
A model parameter.
A model parameter.
Parameters as a
Parametersobject.Spatial model center position as a
SkyCoord.Get 95% containment position error as
EllipseSkyRegion.Spatial model center position
(lon, lat)in radians and frame of the model.Methods Summary
__call__(lon, lat[, energy])Call evaluate method.
copy(**kwargs)Deep copy.
evaluate_geom(geom)Evaluate model on
Geom.freeze()Freeze all parameters.
from_dict(data, **kwargs)Create a spatial model from a dictionary.
from_parameters(parameters, **kwargs)Create model from parameter list.
from_position(position, **kwargs)Define the position of the model using a
SkyCoord.integrate_geom(geom[, oversampling_factor])Integrate model on
Geom.plot([ax, geom])Plot spatial model.
plot_error([ax, which, kwargs_position, ...])Plot the errors of the spatial model.
plot_grid([geom])Plot spatial model energy slices in a grid.
plot_interactive([ax, geom])Plot spatial model.
plot_position_error([ax])Plot position error.
reassign(datasets_names, new_datasets_names)Reassign a model from one dataset to another.
to_dict([full_output])Create dictionary for YAML serilisation.
to_region(**kwargs)Model outline as a
PointSkyRegion.unfreeze()Restore parameters frozen status to default.
Attributes Documentation
- covariance#
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- evaluation_region#
Evaluation region.
- frozen#
Frozen status of a model, True if all parameters are frozen.
- is_energy_dependent#
- lat_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit.
- minfloat, optional
Minimum (sometimes used in fitting).
- maxfloat, optional
Maximum (sometimes used in fitting).
- frozenbool, optional
Frozen (used in fitting).
- errorfloat
Parameter error.
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale.- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- prior
Prior Prior set on the parameter.
- lon_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unitor str, optional Unit.
- minfloat, optional
Minimum (sometimes used in fitting).
- maxfloat, optional
Maximum (sometimes used in fitting).
- frozenbool, optional
Frozen (used in fitting).
- errorfloat
Parameter error.
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factorandscale.- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- prior
Prior Prior set on the parameter.
- parameters#
Parameters as a
Parametersobject.
- parameters_unique_names#
- phi_0#
- position_error#
Get 95% containment position error as
EllipseSkyRegion.
- position_lonlat#
Spatial model center position
(lon, lat)in radians and frame of the model.
- tag = ['PointSpatialModel', 'point']#
- type#
Methods Documentation
- __call__(lon, lat, energy=None)#
Call evaluate method.
- copy(**kwargs)#
Deep copy.
- freeze()#
Freeze all parameters.
- classmethod from_dict(data, **kwargs)#
Create a spatial model from a dictionary.
- Parameters:
- datadict
Dictionary containing model parameters.
- kwargsdict
Keyword arguments passed to
from_parameters.
- classmethod from_parameters(parameters, **kwargs)#
Create model from parameter list.
- Parameters:
- parameters
Parameters Parameters for init.
- parameters
- Returns:
- model
Model Model instance.
- model
- classmethod from_position(position, **kwargs)#
Define the position of the model using a
SkyCoord.The model will be created in the frame of the
SkyCoord.- Parameters:
- position
SkyCoord Position.
- position
- Returns:
- model
SpatialModel Spatial model.
- model
- integrate_geom(geom, oversampling_factor=None)[source]#
Integrate model on
Geom.- Parameters:
- geom
Geom Map geometry.
- geom
- Returns:
- flux
Map Predicted flux map.
- flux
- plot(ax=None, geom=None, **kwargs)#
Plot spatial model.
- plot_error(ax=None, which='position', kwargs_position=None, kwargs_extension=None)#
Plot the errors of the spatial model.
- Parameters:
- ax
Axes, optional Matplotlib axes to plot the errors on. Default is None.
- which: list of str
Which errors to plot. Available options are:
“all”: all the optional steps are plotted
“position”: plot the position error of the spatial model
“extension”: plot the extension error of the spatial model
- kwargs_positiondict, optional
Keyword arguments passed to
plot_position_error. Default is None.- kwargs_extensiondict, optional
Keyword arguments passed to
plot_extension_error. Default is None.
- ax
- Returns:
- ax
Axes, optional Matplotlib axes.
- ax
- plot_grid(geom=None, **kwargs)#
Plot spatial model energy slices in a grid.
- plot_interactive(ax=None, geom=None, **kwargs)#
Plot spatial model.
- plot_position_error(ax=None, **kwargs)#
Plot position error.
- reassign(datasets_names, new_datasets_names)#
Reassign a model from one dataset to another.
- Parameters:
- datasets_namesstr or list
Name of the datasets where the model is currently defined.
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns:
- model
Model Reassigned model.
- model
- to_dict(full_output=False)#
Create dictionary for YAML serilisation.
- to_region(**kwargs)[source]#
Model outline as a
PointSkyRegion.
- unfreeze()#
Restore parameters frozen status to default.