Spectral Fitting¶
In the following you will see how to fit spectral data in OGIP format. The
format is described at 1D counts spectra. An example dataset is available in the
$GAMMAPY_DATA
repo. For a description of the available fit statstics see
Fit statistics.
Getting Started¶
The following example shows how to fit a power law simultaneously to two
simulated crab runs using the Fit
class.
from gammapy.spectrum import SpectrumDatasetOnOff
from gammapy.utils.fitting import Fit
from gammapy.spectrum.models import PowerLaw
import matplotlib.pyplot as plt
path = "$GAMMAPY_DATA/joint-crab/spectra/hess/"
obs_1 = SpectrumDatasetOnOff.from_ogip_files(path + "pha_obs23523.fits")
obs_2 = SpectrumDatasetOnOff.from_ogip_files(path + "pha_obs23592.fits")
model = PowerLaw(
index=2,
amplitude='1e-12 cm-2 s-1 TeV-1',
reference='1 TeV',
)
obs_1.model = model
obs_2.model = model
fit = Fit([obs_1, obs_2])
result = fit.run()
model.parameters.covariance = result.parameters.covariance You can check the fit results by looking at the result and model object:
>>> print(result)
OptimizeResult
backend : minuit
method : minuit
success : True
nfev : 115
total stat : 65.36
message : Optimization terminated successfully.
>>> print(model)
PowerLaw
Parameters:
name value error unit min max frozen
--------- --------- --------- -------------- --- --- ------
index 2.781e+00 1.120e-01 nan nan False
amplitude 5.201e-11 4.965e-12 cm-2 s-1 TeV-1 nan nan False
reference 1.000e+00 0.000e+00 TeV nan nan True
Covariance:
name index amplitude reference
--------- --------- --------- ---------
index 1.255e-02 3.578e-13 0.000e+00
amplitude 3.578e-13 2.465e-23 0.000e+00
reference 0.000e+00 0.000e+00 0.000e+00
Interactive Sherpa Fit¶
If you want to do something specific you can always fit the PHA data directly using Sherpa. The following example illustrates how to do this with the example dataset used above. It makes use of the Sherpa datastack module.
from pathlib import Path
import os
from sherpa.astro import datastack
from sherpa.models import PowLaw1D
pha1 = str(Path(os.environ["GAMMAPY_DATA"]) / "joint-crab" / "spectra" / "hess" / "pha_obs23592.fits")
pha2 = str(Path(os.environ["GAMMAPY_DATA"]) / "joint-crab" / "spectra" / "hess" / "pha_obs23523.fits")
phalist = ','.join([pha1, pha2])
ds = datastack.DataStack()
ds.load_pha(phalist)
model = PowLaw1D('powlaw1d.default')
model.ampl = 1
model.ref = 1e9
model.gamma = 2
ds.set_source(model*1e-20)
for i in range(1, len(ds.datasets) + 1):
datastack.ignore_bad(i)
datastack.ignore_bad(i, 1)
datastack.set_stat('wstat')
ds.fit()
datastack.covar()
This should give the following output
Datasets = 1, 2
Method = levmar
Statistic = wstat
Initial fit statistic = 253.552
Final fit statistic = 65.361 at function evaluation 25
Data points = 82
Degrees of freedom = 80
Probability [Q-value] = 0.88159
Reduced statistic = 0.817012
Change in statistic = 188.191
powlaw1d.default.gamma 2.78053 +/- 0.121423
powlaw1d.default.ampl 5.20034 +/- 0.510299
Datasets = 1, 2
Confidence Method = covariance
Iterative Fit Method = None
Fitting Method = levmar
Statistic = wstat
covariance 1-sigma (68.2689%) bounds:
Param Best-Fit Lower Bound Upper Bound
----- -------- ----------- -----------
powlaw1d.default.gamma 2.78053 -0.112025 0.112025
powlaw1d.default.ampl 5.20034 -0.496564 0.496564