Source code for gammapy.cube.background

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from astropy.coordinates import SkyOffsetFrame
from gammapy.data import FixedPointingInfo
from gammapy.maps import WcsNDMap
from gammapy.utils.coordinates import sky_to_fov

__all__ = ["make_map_background_irf"]


[docs]def make_map_background_irf(pointing, ontime, bkg, geom, oversampling=None): """Compute background map from background IRFs. Parameters ---------- pointing : `~gammapy.data.FixedPointingInfo` or `~astropy.coordinates.SkyCoord` Observation pointing - If a ``FixedPointingInfo`` is passed, FOV coordinates are properly computed. - If a ``SkyCoord`` is passed, FOV frame rotation is not taken into account. ontime : `~astropy.units.Quantity` Observation ontime. i.e. not corrected for deadtime see https://gamma-astro-data-formats.readthedocs.io/en/stable/irfs/full_enclosure/bkg/index.html#notes) bkg : `~gammapy.irf.Background3D` Background rate model geom : `~gammapy.maps.WcsGeom` Reference geometry oversampling: int Oversampling factor in energy, used for the background model evaluation. Returns ------- background : `~gammapy.maps.WcsNDMap` Background predicted counts sky cube in reco energy """ # TODO: # This implementation can be improved in two ways: # 1. Create equal time intervals between TSTART and TSTOP and sum up the # background IRF for each interval. This is instead of multiplying by # the total ontime. This then handles the rotation of the FoV. # 2. Use the pointing table (does not currently exist in CTA files) to # obtain the RA DEC and time for each interval. This then considers that # the pointing might change slightly over the observation duration # Get altaz coords for map if oversampling is not None: geom = geom.upsample(factor=oversampling, axis="energy") map_coord = geom.to_image().get_coord() sky_coord = map_coord.skycoord if isinstance(pointing, FixedPointingInfo): altaz_coord = sky_coord.transform_to(pointing.altaz_frame) # Compute FOV coordinates of map relative to pointing fov_lon, fov_lat = sky_to_fov( altaz_coord.az, altaz_coord.alt, pointing.altaz.az, pointing.altaz.alt ) else: # Create OffsetFrame frame = SkyOffsetFrame(origin=pointing) pseudo_fov_coord = sky_coord.transform_to(frame) fov_lon = pseudo_fov_coord.lon fov_lat = pseudo_fov_coord.lat energies = geom.get_axis_by_name("energy").edges bkg_de = bkg.evaluate_integrate( fov_lon=fov_lon, fov_lat=fov_lat, energy_reco=energies[:, np.newaxis, np.newaxis], ) d_omega = geom.solid_angle() data = (bkg_de * d_omega * ontime).to_value("") bkg_map = WcsNDMap(geom, data=data) if oversampling is not None: bkg_map = bkg_map.downsample(factor=oversampling, axis="energy") return bkg_map
def _fov_background_norm(acceptance_map, counts_map, exclusion_mask=None): """Compute FOV background norm. This operation is normally performed on single observation maps. An exclusion map is used to avoid using regions with significant gamma-ray emission. All maps are assumed to follow the same WcsGeom. Parameters ---------- acceptance_map : `~gammapy.maps.WcsNDMap` Observation hadron acceptance map (i.e. predicted background map) counts_map : `~gammapy.maps.WcsNDMap` Observation counts map exclusion_mask : `~gammapy.maps.WcsNDMap` Exclusion mask Returns ------- norm_factor : `~numpy.ndarray` Background normalization factor as function of energy (1D vector) """ if exclusion_mask is None: mask = np.ones_like(counts_map, dtype=bool) else: # We resize the mask mask = np.resize(np.squeeze(exclusion_mask.data), acceptance_map.data.shape) # We multiply the data with the mask to obtain normalization factors in each energy bin integ_acceptance = np.sum(acceptance_map.data * mask, axis=(1, 2)) integ_counts = np.sum(counts_map.data * mask, axis=(1, 2)) norm_factor = integ_counts / integ_acceptance return norm_factor