Pulsar

class gammapy.astro.source.Pulsar(P_0='0.1 s', B='1e10 G', n=3, I=<Quantity 1.e+45 cm2 g>, R=<Quantity 1000000. cm>, age=None, L_0=None)[source]

Bases: gammapy.astro.source.SimplePulsar

Magnetic dipole spin-down pulsar model.

Reference: http://www.cv.nrao.edu/course/astr534/Pulsars.html

Parameters:
P_0 : float

Period at birth

B : Quantity

Magnetic field strength at the poles (Gauss)

n : float

Spin-down braking index

I : float

Moment of inertia

R : float

Radius

Methods Summary

energy_integrated(self, t) Total energy released by a given time.
luminosity_spindown(self, t) Spin down luminosity.
magnetic_field(self, t) Magnetic field at polar cap (assumed constant).
period(self, t) Rotation period.
period_dot(self, t) Period derivative at age t.
tau(self, t) Characteristic age at real age t.

Methods Documentation

energy_integrated(self, t)[source]

Total energy released by a given time.

Time-integrated spin-down luminosity since birth.

\[E(t) = \dot{L}_0 \tau_0 \frac{t}{t + \tau_0}\]
Parameters:
t : Quantity

Time after birth of the pulsar.

luminosity_spindown(self, t)[source]

Spin down luminosity.

\[\dot{L}(t) = \dot{L}_0 \left(1 + \frac{t}{\tau_0}\right)^{-\frac{n + 1}{n - 1}}\]
Parameters:
t : Quantity

Time after birth of the pulsar

magnetic_field(self, t)[source]

Magnetic field at polar cap (assumed constant).

\[B = 3.2 \cdot 10^{19} (P\dot{P})^{1/2} \text{ Gauss}\]
Parameters:
t : Quantity

Time after birth of the pulsar.

period(self, t)[source]

Rotation period.

\[P(t) = P_0 \left(1 + \frac{t}{\tau_0}\right)^{\frac{1}{n - 1}}\]
Parameters:
t : Quantity

Time after birth of the pulsar

period_dot(self, t)[source]

Period derivative at age t.

P_dot for a given period and magnetic field B, assuming a dipole spin-down.

\[\dot{P}(t) = \frac{B^2}{3.2 \cdot 10^{19} P(t)}\]
Parameters:
t : Quantity

Time after birth of the pulsar.

tau(self, t)[source]

Characteristic age at real age t.

\[\tau = \frac{P}{2\dot{P}}\]
Parameters:
t : Quantity

Time after birth of the pulsar.