ASmooth¶
-
class
gammapy.detect.
ASmooth
(kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>, method='simple', threshold=5, scales=None)[source]¶ Bases:
object
Adaptively smooth counts image.
Achieves a roughly constant significance of features across the whole image.
Algorithm based on https://ui.adsabs.harvard.edu/abs/2006MNRAS.368…65E
The algorithm was slightly adapted to also allow Li & Ma and TS to estimate the significance of a feature in the image.
Parameters: - kernel :
astropy.convolution.Kernel
Smoothing kernel.
- method : {‘simple’, ‘asmooth’, ‘lima’}
Significance estimation method.
- threshold : float
Significance threshold.
- scales :
Quantity
Smoothing scales.
Methods Summary
kernels
(self, pixel_scale)Ring kernels according to the specified method. make_scales
(n_scales[, factor, kernel])Create list of Gaussian widths. run
(self, counts[, background, exposure])Run image smoothing. Methods Documentation
-
kernels
(self, pixel_scale)[source]¶ Ring kernels according to the specified method.
Parameters: - pixel_scale :
Angle
Sky image pixel scale
Returns: - kernels : list
List of
Kernel
- pixel_scale :
-
static
make_scales
(n_scales, factor=1.4142135623730951, kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>)[source]¶ Create list of Gaussian widths.
- kernel :