TSMapEstimator¶
-
class
gammapy.detect.
TSMapEstimator
(method='root brentq', error_method='covar', error_sigma=1, ul_method='covar', ul_sigma=2, n_jobs=1, threshold=None, rtol=0.001)[source]¶ Bases:
object
Compute TS map using different optimization methods.
The map is computed fitting by a single parameter amplitude fit. The fit is simplified by finding roots of the the derivative of the fit statistics using various root finding algorithms. The approach is sescribed in Appendix A in Stewart (2009).
Parameters: - method : str (‘root’)
The following options are available:
'root brentq'
(default)- Fit amplitude by finding the roots of the the derivative of the fit statistics using the brentq method.
'root newton'
- Fit amplitude by finding the roots of the the derivative of the fit statistics using Newton’s method.
'leastsq iter'
- Fit the amplitude by an iterative least square fit, that can be solved analytically.
- error_method : [‘covar’, ‘conf’]
Error estimation method.
- error_sigma : int (1)
Sigma for flux error.
- ul_method : [‘covar’, ‘conf’]
Upper limit estimation method.
- ul_sigma : int (2)
Sigma for flux upper limits.
- n_jobs : int
Number of parallel jobs to use for the computation.
- threshold : float (None)
If the TS value corresponding to the initial flux estimate is not above this threshold, the optimizing step is omitted to save computing time.
- rtol : float (0.001)
Relative precision of the flux estimate. Used as a stopping criterion for the amplitude fit.
Notes
Negative \(TS\) values are defined as following:
\[\begin{split}TS = \left \{ \begin{array}{ll} -TS \text{ if } F < 0 \\ TS \text{ else} \end{array} \right.\end{split}\]Where \(F\) is the fitted flux amplitude.
References
Methods Summary
flux_default
(maps, kernel)Estimate default flux map using a given kernel. mask_default
(maps, kernel)Compute default mask where to estimate TS values. run
(self, maps, kernel[, which, …])Run TS map estimation. sqrt_ts
(map_ts)Compute sqrt(TS) map. Methods Documentation
-
static
flux_default
(maps, kernel)[source]¶ Estimate default flux map using a given kernel.
Parameters: - maps : dict
Input sky maps. Requires “counts”, “background” and “exposure” maps.
- kernel :
astropy.convolution.Kernel2D
Source model kernel.
Returns: - flux_approx :
gammapy.maps.WcsNDMap
Approximate flux map.
-
static
mask_default
(maps, kernel)[source]¶ Compute default mask where to estimate TS values.
Parameters: - maps : dict
Input sky maps. Requires “background” and “exposure”.
- kernel :
astropy.convolution.Kernel2D
Source model kernel.
Returns: - mask :
gammapy.maps.WcsNDMap
Mask map.
-
run
(self, maps, kernel, which='all', downsampling_factor=None)[source]¶ Run TS map estimation.
Requires “counts”, “exposure” and “background” map to run.
Parameters: - maps : dict
Input sky maps.
- kernel :
astropy.convolution.Kernel2D
or 2Dndarray
Source model kernel.
- which : list of str or ‘all’
Which maps to compute.
- downsampling_factor : int
Sample down the input maps to speed up the computation. Only integer values that are a multiple of 2 are allowed. Note that the kernel is not sampled down, but must be provided with the downsampled bin size.
Returns: - maps : dict
Result maps.
-
static
sqrt_ts
(map_ts)[source]¶ Compute sqrt(TS) map.
Compute sqrt(TS) as defined by:
\[\begin{split}\sqrt{TS} = \left \{ \begin{array}{ll} -\sqrt{-TS} & : \text{if} \ TS < 0 \\ \sqrt{TS} & : \text{else} \end{array} \right.\end{split}\]Parameters: - map_ts :
gammapy.maps.WcsNDMap
Input TS map.
Returns: - sqrt_ts :
gammapy.maps.WcsNDMap
Sqrt(TS) map.
- map_ts :