EnergyDispersion2D¶
-
class
gammapy.irf.
EnergyDispersion2D
(e_true_lo, e_true_hi, migra_lo, migra_hi, offset_lo, offset_hi, data, interp_kwargs=None, meta=None)[source]¶ Bases:
object
Offset-dependent energy dispersion matrix.
Data format specification: EDISP_2D
Parameters: See also
Examples
Read energy dispersion IRF from disk:
>>> from gammapy.irf import EnergyDispersion2D >>> from gammapy.utils.energy import energy_logspace >>> filename = '$GAMMAPY_DATA/tests/irf/hess/pa/hess_edisp_2d_023523.fits.gz' >>> edisp2d = EnergyDispersion2D.read(filename, hdu='ENERGY DISPERSION') >>> print(edisp2d) EnergyDispersion2D NDDataArray summary info e_true : size = 15, min = 0.125 TeV, max = 80.000 TeV migra : size = 100, min = 0.051, max = 10.051 offset : size = 6, min = 0.125 deg, max = 2.500 deg Data : size = 9000, min = 0.000, max = 3.405
Create energy dispersion matrix (
EnergyDispersion
) for a given field of view offset and energy binning:>>> energy = energy_logspace(0.1,20,60, 'TeV') >>> edisp = edisp2d.to_energy_dispersion(offset='1.2 deg', e_reco=energy, e_true=energy) >>> print(edisp) EnergyDispersion NDDataArray summary info e_true : size = 60, min = 0.105 TeV, max = 19.136 TeV e_reco : size = 60, min = 0.105 TeV, max = 19.136 TeV Data : size = 3600, min = 0.000, max = 0.266
Attributes Summary
default_interp_kwargs
Default Interpolation kwargs for NDDataArray
.Methods Summary
from_gauss
(e_true, migra, bias, sigma, offset)Create Gaussian energy dispersion matrix ( EnergyDispersion2D
).from_hdulist
(hdulist[, hdu])Create from HDUList
.from_table
(table)Create from Table
.get_response
(self, offset, e_true[, e_reco, …])Detector response R(Delta E_reco, E_true) peek
(self[, figsize])Quick-look summary plots. plot_bias
(self[, ax, offset, add_cbar])Plot migration as a function of true energy for a given offset. plot_migration
(self[, ax, offset, e_true, migra])Plot energy dispersion for given offset and true energy. read
(filename[, hdu])Read from FITS file. to_energy_dispersion
(self, offset[, e_true, …])Detector response R(Delta E_reco, Delta E_true) to_fits
(self[, name])Convert to BinTable
.to_table
(self)Convert to Table
.Attributes Documentation
-
default_interp_kwargs
= {'bounds_error': False, 'fill_value': None}¶ Default Interpolation kwargs for
NDDataArray
. Extrapolate.
Methods Documentation
-
classmethod
from_gauss
(e_true, migra, bias, sigma, offset, pdf_threshold=1e-06)[source]¶ Create Gaussian energy dispersion matrix (
EnergyDispersion2D
).The output matrix will be Gaussian in (e_true / e_reco).
The
bias
andsigma
should be either floats or arrays of same dimension thane_true
.bias
refers to the mean value of themigra
distribution minus one, i.e.bias=0
means no bias.Note that, the output matrix is flat in offset.
Parameters: - e_true :
Quantity
Bin edges of true energy axis
- migra :
Quantity
Bin edges of migra axis
- bias : float or
ndarray
Center of Gaussian energy dispersion, bias
- sigma : float or
ndarray
RMS width of Gaussian energy dispersion, resolution
- offset :
Quantity
Bin edges of offset
- pdf_threshold : float, optional
Zero suppression threshold
- e_true :
-
get_response
(self, offset, e_true, e_reco=None, migra_step=0.005)[source]¶ Detector response R(Delta E_reco, E_true)
Probability to reconstruct a given true energy in a given reconstructed energy band. In each reco bin, you integrate with a riemann sum over the default migra bin of your analysis.
Parameters: Returns: - rv :
ndarray
Redistribution vector
- rv :
-
peek
(self, figsize=(15, 5))[source]¶ Quick-look summary plots.
Parameters: - figsize : (float, float)
Size of the resulting plot
-
plot_bias
(self, ax=None, offset=None, add_cbar=False, **kwargs)[source]¶ Plot migration as a function of true energy for a given offset.
Parameters: - ax :
Axes
, optional Axis
- offset :
Angle
, optional Offset
- add_cbar : bool
Add a colorbar to the plot.
- kwargs : dict
Keyword arguments passed to
pcolormesh
.
Returns: - ax :
Axes
Axis
- ax :
-
plot_migration
(self, ax=None, offset=None, e_true=None, migra=None, **kwargs)[source]¶ Plot energy dispersion for given offset and true energy.
Parameters: Returns: - ax :
Axes
Axis
- ax :
-
classmethod
read
(filename, hdu='edisp_2d')[source]¶ Read from FITS file.
Parameters: - filename : str
File name
-
to_energy_dispersion
(self, offset, e_true=None, e_reco=None)[source]¶ Detector response R(Delta E_reco, Delta E_true)
Probability to reconstruct an energy in a given true energy band in a given reconstructed energy band
Parameters: Returns: - edisp :
EnergyDispersion
Energy dispersion matrix
- edisp :
-