Map¶
-
class
gammapy.maps.
Map
(geom, data, meta=None, unit='')[source]¶ Bases:
abc.ABC
Abstract map class.
This can represent WCS- or HEALPIX-based maps with 2 spatial dimensions and N non-spatial dimensions.
Parameters: Attributes Summary
data
Data array ( ndarray
)geom
Map geometry ( Geom
)meta
Map meta ( dict
)quantity
Map data times unit ( Quantity
)unit
Map unit ( Unit
)Methods Summary
coadd
(self, map_in[, weights])Add the contents of map_in
to this map.copy
(self, \*\*kwargs)Copy map instance and overwrite given attributes, except for geometry. create
(\*\*kwargs)Create an empty map object. crop
(self, crop_width)Crop the spatial dimensions of the map. downsample
(self, factor[, preserve_counts, axis])Downsample the spatial dimension by a given factor. fill_by_coord
(self, coords[, weights])Fill pixels at coords
with givenweights
.fill_by_idx
(self, idx[, weights])Fill pixels at idx
with givenweights
.fill_by_pix
(self, pix[, weights])Fill pixels at pix
with givenweights
.from_geom
(geom[, meta, data, map_type, …])Generate an empty map from a Geom
instance.from_hdulist
(hdulist[, hdu, hdu_bands, map_type])Create from astropy.io.fits.HDUList
.get_by_coord
(self, coords)Return map values at the given map coordinates. get_by_idx
(self, idx)Return map values at the given pixel indices. get_by_pix
(self, pix)Return map values at the given pixel coordinates. get_image_by_coord
(self, coords)Return spatial map at the given axis coordinates. get_image_by_idx
(self, idx)Return spatial map at the given axis pixel indices. get_image_by_pix
(self, pix)Return spatial map at the given axis pixel coordinates interp_by_coord
(self, coords[, interp, …])Interpolate map values at the given map coordinates. interp_by_pix
(self, pix[, interp, fill_value])Interpolate map values at the given pixel coordinates. iter_by_image
(self)Iterate over image planes of the map. pad
(self, pad_width[, mode, cval, order])Pad the spatial dimensions of the map. plot_interactive
(self[, rc_params])Plot map with interactive widgets to explore the non spatial axes. read
(filename[, hdu, hdu_bands, map_type])Read a map from a FITS file. reproject
(self, geom[, order, mode])Reproject this map to a different geometry. set_by_coord
(self, coords, vals)Set pixels at coords
with givenvals
.set_by_idx
(self, idx, vals)Set pixels at idx
with givenvals
.set_by_pix
(self, pix, vals)Set pixels at pix
with givenvals
.slice_by_idx
(self, slices)Slice sub map from map object. sum_over_axes
(self[, keepdims])Reduce to a 2D image by summing over non-spatial dimensions. upsample
(self, factor[, order, …])Upsample the spatial dimension by a given factor. write
(self, filename[, overwrite])Write to a FITS file. Attributes Documentation
Methods Documentation
-
coadd
(self, map_in, weights=None)[source]¶ Add the contents of
map_in
to this map.This method can be used to combine maps containing integral quantities (e.g. counts) or differential quantities if the maps have the same binning.
Parameters: - map_in :
Map
Input map.
- weights: `Map` or `~numpy.ndarray`
The weight factors while adding
- map_in :
-
copy
(self, **kwargs)[source]¶ Copy map instance and overwrite given attributes, except for geometry.
Parameters: - **kwargs : dict
Keyword arguments to overwrite in the map constructor.
Returns: - copy :
Map
Copied Map.
-
static
create
(**kwargs)[source]¶ Create an empty map object.
This method accepts generic options listed below, as well as options for
HpxMap
andWcsMap
objects. For WCS-specific options, seeWcsMap.create
and for HPX-specific options, seeHpxMap.create
.Parameters: - coordsys : str
Coordinate system, either Galactic (‘GAL’) or Equatorial (‘CEL’).
- map_type : {‘wcs’, ‘wcs-sparse’, ‘hpx’, ‘hpx-sparse’}
Map type. Selects the class that will be used to instantiate the map.
- binsz : float or
ndarray
Pixel size in degrees.
- skydir :
SkyCoord
Coordinate of map center.
- axes : list
List of
MapAxis
objects for each non-spatial dimension. If None then the map will be a 2D image.- dtype : str
Data type, default is ‘float32’
- unit : str or
Unit
Data unit.
- meta :
dict
Dictionary to store meta data.
Returns: - map :
Map
Empty map object.
-
crop
(self, crop_width)[source]¶ Crop the spatial dimensions of the map.
Parameters: - crop_width : {sequence, array_like, int}
Number of pixels cropped from the edges of each axis. Defined analogously to
pad_with
fromnumpy.pad
.
Returns: - map :
Map
Cropped map.
-
downsample
(self, factor, preserve_counts=True, axis=None)[source]¶ Downsample the spatial dimension by a given factor.
Parameters: - factor : int
Downsampling factor.
- preserve_counts : bool
Preserve the integral over each bin. This should be true if the map is an integral quantity (e.g. counts) and false if the map is a differential quantity (e.g. intensity).
- axis : str
Which axis to downsample. By default spatial axes are downsampled.
Returns: - map :
Map
Downsampled map.
-
fill_by_coord
(self, coords, weights=None)[source]¶ Fill pixels at
coords
with givenweights
.Parameters:
-
fill_by_idx
(self, idx, weights=None)[source]¶ Fill pixels at
idx
with givenweights
.Parameters: - idx : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps.
- weights :
ndarray
Weights vector. Default is weight of one.
-
fill_by_pix
(self, pix, weights=None)[source]¶ Fill pixels at
pix
with givenweights
.Parameters: - pix : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps. Pixel indices can be either float or integer type. Float indices will be rounded to the nearest integer.
- weights :
ndarray
Weights vector. Default is weight of one.
-
static
from_geom
(geom, meta=None, data=None, map_type='auto', unit='', dtype='float32')[source]¶ Generate an empty map from a
Geom
instance.Parameters: - geom :
Geom
Map geometry.
- data :
numpy.ndarray
data array
- meta :
dict
Dictionary to store meta data.
- map_type : {‘wcs’, ‘wcs-sparse’, ‘hpx’, ‘hpx-sparse’, ‘auto’}
Map type. Selects the class that will be used to instantiate the map. The map type should be consistent with the geometry. If map_type is ‘auto’ then an appropriate map type will be inferred from type of
geom
.- unit : str or
Unit
Data unit.
Returns: - map_out :
Map
Map object
- geom :
-
static
from_hdulist
(hdulist, hdu=None, hdu_bands=None, map_type='auto')[source]¶ Create from
astropy.io.fits.HDUList
.
-
get_by_coord
(self, coords)[source]¶ Return map values at the given map coordinates.
Parameters: - coords : tuple or
MapCoord
Coordinate arrays for each dimension of the map. Tuple should be ordered as (lon, lat, x_0, …, x_n) where x_i are coordinates for non-spatial dimensions of the map.
Returns: - vals :
ndarray
Values of pixels in the map. np.nan used to flag coords outside of map.
- coords : tuple or
-
get_by_idx
(self, idx)[source]¶ Return map values at the given pixel indices.
Parameters: - idx : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps.
Returns: - vals :
ndarray
Array of pixel values. np.nan used to flag coordinate outside of map
-
get_by_pix
(self, pix)[source]¶ Return map values at the given pixel coordinates.
Parameters: - pix : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps. Pixel indices can be either float or integer type.
Returns: - vals :
ndarray
Array of pixel values. np.nan used to flag coordinates outside of map
-
get_image_by_coord
(self, coords)[source]¶ Return spatial map at the given axis coordinates.
Parameters: - coords : tuple or dict
Tuple should be ordered as (x_0, …, x_n) where x_i are coordinates for non-spatial dimensions of the map. Dict should specify the axis names of the non-spatial axes such as {‘axes0’: x_0, …, ‘axesn’: x_n}.
Returns: - map_out :
Map
Map with spatial dimensions only.
See also
Examples
import numpy as np from gammapy.maps import Map, MapAxis from astropy.coordinates import SkyCoord from astropy import units as u # Define map axes energy_axis = MapAxis.from_edges( np.logspace(-1., 1., 4), unit='TeV', name='energy', ) time_axis = MapAxis.from_edges( np.linspace(0., 10, 20), unit='h', name='time', ) # Define map center skydir = SkyCoord(0, 0, frame='galactic', unit='deg') # Create map m_wcs = Map.create( map_type='wcs', binsz=0.02, skydir=skydir, width=10.0, axes=[energy_axis, time_axis], ) # Get image by coord tuple image = m_wcs.get_image_by_coord(('500 GeV', '1 h')) # Get image by coord dict with strings image = m_wcs.get_image_by_coord({'energy': '500 GeV', 'time': '1 h'}) # Get image by coord dict with quantities image = m_wcs.get_image_by_coord({'energy': 0.5 * u.TeV, 'time': 1 * u.h})
-
get_image_by_idx
(self, idx)[source]¶ Return spatial map at the given axis pixel indices.
Parameters: - idx : tuple
Tuple of scalar indices for each non spatial dimension of the map. Tuple should be ordered as (I_0, …, I_n).
Returns: - map_out :
Map
Map with spatial dimensions only.
See also
-
get_image_by_pix
(self, pix)[source]¶ Return spatial map at the given axis pixel coordinates
Parameters: - pix : tuple
Tuple of scalar pixel coordinates for each non-spatial dimension of the map. Tuple should be ordered as (I_0, …, I_n). Pixel coordinates can be either float or integer type.
Returns: - map_out :
Map
Map with spatial dimensions only.
See also
-
interp_by_coord
(self, coords, interp=None, fill_value=None)[source]¶ Interpolate map values at the given map coordinates.
Parameters: - coords : tuple or
MapCoord
Coordinate arrays for each dimension of the map. Tuple should be ordered as (lon, lat, x_0, …, x_n) where x_i are coordinates for non-spatial dimensions of the map.
- interp : {None, ‘nearest’, ‘linear’, ‘cubic’, 0, 1, 2, 3}
Method to interpolate data values. By default no interpolation is performed and the return value will be the amplitude of the pixel encompassing the given coordinate. Integer values can be used in lieu of strings to choose the interpolation method of the given order (0=’nearest’, 1=’linear’, 2=’quadratic’, 3=’cubic’). Note that only ‘nearest’ and ‘linear’ methods are supported for all map types.
- fill_value : None or float value
The value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated.
Returns: - vals :
ndarray
Interpolated pixel values.
- coords : tuple or
-
interp_by_pix
(self, pix, interp=None, fill_value=None)[source]¶ Interpolate map values at the given pixel coordinates.
Parameters: - pix : tuple
Tuple of pixel coordinate arrays for each dimension of the map. Tuple should be ordered as (p_lon, p_lat, p_0, …, p_n) where p_i are pixel coordinates for non-spatial dimensions of the map.
- interp : {None, ‘nearest’, ‘linear’, ‘cubic’, 0, 1, 2, 3}
Method to interpolate data values. By default no interpolation is performed and the return value will be the amplitude of the pixel encompassing the given coordinate. Integer values can be used in lieu of strings to choose the interpolation method of the given order (0=’nearest’, 1=’linear’, 2=’quadratic’, 3=’cubic’). Note that only ‘nearest’ and ‘linear’ methods are supported for all map types.
- fill_value : None or float value
The value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated.
Returns: - vals :
ndarray
Interpolated pixel values.
-
iter_by_image
(self)[source]¶ Iterate over image planes of the map.
This is a generator yielding
(data, idx)
tuples, wheredata
is anumpy.ndarray
view of the image plane data, andidx
is a tuple of int, the index of the image plane.The image plane index is in data order, so that the data array can be indexed directly. See Iterating by image for further information.
-
pad
(self, pad_width, mode='constant', cval=0, order=1)[source]¶ Pad the spatial dimensions of the map.
Parameters: - pad_width : {sequence, array_like, int}
Number of pixels padded to the edges of each axis.
- mode : {‘edge’, ‘constant’, ‘interp’}
Padding mode. ‘edge’ pads with the closest edge value. ‘constant’ pads with a constant value. ‘interp’ pads with an extrapolated value.
- cval : float
Padding value when mode=’consant’.
- order : int
Order of interpolation when mode=’constant’ (0 = nearest-neighbor, 1 = linear, 2 = quadratic, 3 = cubic).
Returns: - map :
Map
Padded map.
-
plot_interactive
(self, rc_params=None, **kwargs)[source]¶ Plot map with interactive widgets to explore the non spatial axes.
Parameters: - rc_params : dict
Passed to
matplotlib.rc_context(rc=rc_params)
to style the plot.- **kwargs : dict
Keyword arguments passed to
WcsNDMap.plot
.
Examples
You can try this out e.g. using a Fermi-LAT diffuse model cube with an energy axis:
from gammapy.maps import Map m = Map.read("$GAMMAPY_DATA/fermi_3fhl/gll_iem_v06_cutout.fits") m.plot_interactive(add_cbar=True, stretch="sqrt")
If you would like to adjust the figure size you can use the
rc_params
argument:rc_params = {'figure.figsize': (12, 6), 'font.size': 12} m.plot_interactive(rc_params=rc_params)
-
static
read
(filename, hdu=None, hdu_bands=None, map_type='auto')[source]¶ Read a map from a FITS file.
Parameters: - filename : str or
Path
Name of the FITS file.
- hdu : str
Name or index of the HDU with the map data.
- hdu_bands : str
Name or index of the HDU with the BANDS table. If not defined this will be inferred from the FITS header of the map HDU.
- map_type : {‘wcs’, ‘wcs-sparse’, ‘hpx’, ‘hpx-sparse’, ‘auto’}
Map type. Selects the class that will be used to instantiate the map. The map type should be consistent with the format of the input file. If map_type is ‘auto’ then an appropriate map type will be inferred from the input file.
Returns: - map_out :
Map
Map object
- filename : str or
-
reproject
(self, geom, order=1, mode='interp')[source]¶ Reproject this map to a different geometry.
Only spatial axes are reprojected, if you would like to reproject non-spatial axes consider using
Map.interp_by_coord()
instead.Parameters: - geom :
Geom
Geometry of projection.
- mode : {‘interp’, ‘exact’}
Method for reprojection. ‘interp’ method interpolates at pixel centers. ‘exact’ method integrates over intersection of pixels.
- order : int or str
Order of interpolating polynomial (0 = nearest-neighbor, 1 = linear, 2 = quadratic, 3 = cubic).
Returns: - map :
Map
Reprojected map.
- geom :
-
set_by_idx
(self, idx, vals)[source]¶ Set pixels at
idx
with givenvals
.Parameters: - idx : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps.
- vals :
ndarray
Values vector.
-
set_by_pix
(self, pix, vals)[source]¶ Set pixels at
pix
with givenvals
.Parameters: - pix : tuple
Tuple of pixel index arrays for each dimension of the map. Tuple should be ordered as (I_lon, I_lat, I_0, …, I_n) for WCS maps and (I_hpx, I_0, …, I_n) for HEALPix maps. Pixel indices can be either float or integer type. Float indices will be rounded to the nearest integer.
- vals :
ndarray
Values vector.
-
slice_by_idx
(self, slices)[source]¶ Slice sub map from map object.
For usage examples, see Indexing and Slicing.
Parameters: - slices : dict
Dict of axes names and integers or
slice
object pairs. Contains one element for each non-spatial dimension. For integer indexing the corresponding axes is dropped from the map. Axes not specified in the dict are kept unchanged.
Returns: - map_out :
Map
Sliced map object.
-
sum_over_axes
(self, keepdims=False)[source]¶ Reduce to a 2D image by summing over non-spatial dimensions.
-
upsample
(self, factor, order=0, preserve_counts=True, axis=None)[source]¶ Upsample the spatial dimension by a given factor.
Parameters: - factor : int
Upsampling factor.
- order : int
Order of the interpolation used for upsampling.
- preserve_counts : bool
Preserve the integral over each bin. This should be true if the map is an integral quantity (e.g. counts) and false if the map is a differential quantity (e.g. intensity).
- axis : str
Which axis to upsample. By default spatial axes are upsampled.
Returns: - map :
Map
Upsampled map.
-
write
(self, filename, overwrite=False, **kwargs)[source]¶ Write to a FITS file.
Parameters: - filename : str
Output file name.
- overwrite : bool
Overwrite existing file?
- hdu : str
Set the name of the image extension. By default this will be set to SKYMAP (for BINTABLE HDU) or PRIMARY (for IMAGE HDU).
- hdu_bands : str
Set the name of the bands table extension. By default this will be set to BANDS.
- conv : str
FITS format convention. By default files will be written to the gamma-astro-data-formats (GADF) format. This option can be used to write files that are compliant with format conventions required by specific software (e.g. the Fermi Science Tools). Supported conventions are ‘gadf’, ‘fgst-ccube’, ‘fgst-ltcube’, ‘fgst-bexpcube’, ‘fgst-template’, ‘fgst-srcmap’, ‘fgst-srcmap-sparse’, ‘galprop’, and ‘galprop2’.
- sparse : bool
Sparsify the map by dropping pixels with zero amplitude. This option is only compatible with the ‘gadf’ format.
-