MapDataset¶
-
class
gammapy.cube.MapDataset(models=None, counts=None, exposure=None, mask_fit=None, psf=None, edisp=None, background_model=None, name='', evaluation_mode='local', mask_safe=None, gti=None)[source]¶ Bases:
gammapy.modeling.DatasetPerform sky model likelihood fit on maps.
- Parameters
- models
SkyModels Source sky models.
- counts
WcsNDMap Counts cube
- exposure
WcsNDMap Exposure cube
- mask_fit
WcsNDMap Mask to apply to the likelihood for fitting.
- psf
PSFKernel PSF kernel
- edisp
EnergyDispersion Energy dispersion
- background_model
BackgroundModel Background model to use for the fit.
- evaluation_mode{“local”, “global”}
Model evaluation mode. The “local” mode evaluates the model components on smaller grids to save computation time. This mode is recommended for local optimization algorithms. The “global” evaluation mode evaluates the model components on the full map. This mode is recommended for global optimization algorithms.
- mask_safe
WcsNDMap Mask defining the safe data range.
- gti
GTI GTI of the observation or union of GTI if it is a stacked observation
- models
Attributes Summary
Shape of the counts or background data (tuple)
Combined fit and safe mask
Models (
SkyModels).List of parameters (
Parameters)Methods Summary
copy(self)A deep copy.
create(geom[, energy_axis_true, migra_axis, …])Create a MapDataset object with zero filled maps.
cutout(self, position, width[, mode])Cutout map dataset.
fake(self[, random_state])Simulate fake counts for the current model and reduced IRFs.
from_dict(data, components, models)Create from dicts and models list generated from YAML serialization.
from_geoms(geom, geom_exposure, geom_psf, …)Create a MapDataset object with zero filled maps according to the specified geometries
from_hdulist(hdulist[, name])Create map dataset from list of HDUs.
npred(self)Predicted source and background counts (
Map).plot_residuals(self[, method, …])Plot spatial and spectral residuals.
read(filename[, name])Read map dataset from file.
residuals(self[, method])Compute residuals map.
stack(self, other)Stack another dataset in place.
stat_array(self)Likelihood per bin given the current model parameters
stat_sum(self)Total likelihood given the current model parameters.
to_dict(self[, filename])Convert to dict for YAML serialization.
to_hdulist(self)Convert map dataset to list of HDUs.
to_image(self[, spectrum])Create images by summing over the energy axis.
to_spectrum_dataset(self, on_region[, …])Return a ~gammapy.spectrum.SpectrumDataset from on_region.
write(self, filename[, overwrite])Write map dataset to file.
Attributes Documentation
-
data_shape¶ Shape of the counts or background data (tuple)
-
likelihood_type= 'cash'¶
-
mask¶ Combined fit and safe mask
-
parameters¶ List of parameters (
Parameters)
-
tag= 'MapDataset'¶
Methods Documentation
-
copy(self)¶ A deep copy.
-
classmethod
create(geom, energy_axis_true=None, migra_axis=None, rad_axis=None, binsz_irf=None, reference_time='2000-01-01', name='', **kwargs)[source]¶ Create a MapDataset object with zero filled maps.
- Parameters
- geom
WcsGeom Reference target geometry in reco energy, used for counts and background maps
- energy_axis_true
MapAxis True energy axis used for IRF maps
- migra_axis
MapAxis Migration axis for the energy dispersion map
- rad_axis
MapAxis Rad axis for the psf map
- binsz_irffloat
IRF Map pixel size in degrees.
- reference_time
Time the reference time to use in GTI definition
- namestr
Name of the dataset.
- geom
- Returns
- empty_maps
MapDataset A MapDataset containing zero filled maps
- empty_maps
-
cutout(self, position, width, mode='trim')[source]¶ Cutout map dataset.
- Parameters
- Returns
- cutout
MapDataset Cutout map dataset.
- cutout
-
fake(self, random_state='random-seed')[source]¶ Simulate fake counts for the current model and reduced IRFs.
This method overwrites the counts defined on the dataset object.
- Parameters
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
- random_state{int, ‘random-seed’, ‘global-rng’,
-
classmethod
from_dict(data, components, models)[source]¶ Create from dicts and models list generated from YAML serialization.
-
classmethod
from_geoms(geom, geom_exposure, geom_psf, geom_edisp, reference_time='2000-01-01', name='', **kwargs)[source]¶ Create a MapDataset object with zero filled maps according to the specified geometries
- Parameters
- geom
Geom geometry for the counts and background maps
- geom_exposure
Geom geometry for the exposure map
- geom_psf
Geom geometry for the psf map
- geom_edisp
Geom geometry for the energy dispersion map
- reference_time
Time the reference time to use in GTI definition
- namestr
Name of the dataset.
- geom
- Returns
- empty_maps
MapDataset A MapDataset containing zero filled maps
- empty_maps
-
classmethod
from_hdulist(hdulist, name='')[source]¶ Create map dataset from list of HDUs.
- Parameters
- hdulist
HDUList List of HDUs.
- hdulist
- Returns
- dataset
MapDataset Map dataset.
- dataset
-
plot_residuals(self, method='diff', smooth_kernel='gauss', smooth_radius='0.1 deg', region=None, figsize=(12, 4), **kwargs)[source]¶ Plot spatial and spectral residuals.
The spectral residuals are extracted from the provided region, and the normalization used for the residuals computation can be controlled using the method parameter. If no region is passed, only the spatial residuals are shown.
- Parameters
- method{“diff”, “diff/model”, “diff/sqrt(model)”}
Method used to compute the residuals, see
MapDataset.residuals()- smooth_kernel{‘gauss’, ‘box’}
Kernel shape.
- smooth_radius: `~astropy.units.Quantity`, str or float
Smoothing width given as quantity or float. If a float is given it is interpreted as smoothing width in pixels.
- region: `~regions.Region`
Region (pixel or sky regions accepted)
- figsizetuple
Figure size used for the plotting.
- **kwargsdict
Keyword arguments passed to
imshow.
- Returns
- ax_image, ax_spec
Axes, Image and spectrum axes.
- ax_image, ax_spec
-
classmethod
read(filename, name='')[source]¶ Read map dataset from file.
- Parameters
- filenamestr
Filename to read from.
- Returns
- dataset
MapDataset Map dataset.
- dataset
-
residuals(self, method='diff')[source]¶ Compute residuals map.
- Parameters
- method: {“diff”, “diff/model”, “diff/sqrt(model)”}
- Method used to compute the residuals. Available options are:
“diff” (default): data - model
“diff/model”: (data - model) / model
“diff/sqrt(model)”: (data - model) / sqrt(model)
- Returns
- residuals
gammapy.maps.WcsNDMap Residual map.
- residuals
-
stack(self, other)[source]¶ Stack another dataset in place.
- Parameters
- other: `~gammapy.cube.MapDataset`
Map dataset to be stacked with this one.
-
to_hdulist(self)[source]¶ Convert map dataset to list of HDUs.
- Returns
- hdulist
HDUList Map dataset list of HDUs.
- hdulist
-
to_image(self, spectrum=None)[source]¶ Create images by summing over the energy axis.
Exposure is weighted with an assumed spectrum, resulting in a weighted mean exposure image.
Currently the PSFMap and EdispMap are dropped from the resulting image dataset.
- Parameters
- spectrum
SpectralModel Spectral model to compute the weights. Default is power-law with spectral index of 2.
- spectrum
- Returns
- dataset
MapDataset Map dataset containing images.
- dataset
-
to_spectrum_dataset(self, on_region, containment_correction=False)[source]¶ Return a ~gammapy.spectrum.SpectrumDataset from on_region.
Counts and background are summed in the on_region.
Effective area is taken from the average exposure divided by the livetime. Here we assume it is the sum of the GTIs.
EnergyDispersion is obtained at the on_region center. Only regions with centers are supported.
- Parameters
- on_region
SkyRegion the input ON region on which to extract the spectrum
- containment_correctionbool
Apply containment correction for point sources and circular on regions
- on_region
- Returns
- dataset
SpectrumDataset the resulting reduced dataset
- dataset