Source code for gammapy.maps.wcsmap

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import json
import numpy as np
from astropy.io import fits
from .base import Map
from .wcs import WcsGeom
from .utils import find_hdu, find_bands_hdu

__all__ = ["WcsMap"]


[docs]class WcsMap(Map): """Base class for WCS map classes. Parameters ---------- geom : `~gammapy.maps.WcsGeom` A WCS geometry object. data : `~numpy.ndarray` Data array. """
[docs] @classmethod def create( cls, map_type="wcs", npix=None, binsz=0.1, width=None, proj="CAR", coordsys="CEL", refpix=None, axes=None, skydir=None, dtype="float32", conv="gadf", meta=None, unit="", ): """Factory method to create an empty WCS map. Parameters ---------- map_type : {'wcs', 'wcs-sparse'} Map type. Selects the class that will be used to instantiate the map. npix : int or tuple or list Width of the map in pixels. A tuple will be interpreted as parameters for longitude and latitude axes. For maps with non-spatial dimensions, list input can be used to define a different map width in each image plane. This option supersedes width. width : float or tuple or list Width of the map in degrees. A tuple will be interpreted as parameters for longitude and latitude axes. For maps with non-spatial dimensions, list input can be used to define a different map width in each image plane. binsz : float or tuple or list Map pixel size in degrees. A tuple will be interpreted as parameters for longitude and latitude axes. For maps with non-spatial dimensions, list input can be used to define a different bin size in each image plane. skydir : tuple or `~astropy.coordinates.SkyCoord` Sky position of map center. Can be either a SkyCoord object or a tuple of longitude and latitude in deg in the coordinate system of the map. coordsys : {'CEL', 'GAL'}, optional Coordinate system, either Galactic ('GAL') or Equatorial ('CEL'). axes : list List of non-spatial axes. proj : string, optional Any valid WCS projection type. Default is 'CAR' (cartesian). refpix : tuple Reference pixel of the projection. If None then this will be chosen to be center of the map. dtype : str, optional Data type, default is float32 conv : {'fgst-ccube','fgst-template','gadf'}, optional FITS format convention. Default is 'gadf'. meta : `~collections.OrderedDict` Dictionary to store meta data. unit : str or `~astropy.units.Unit` The unit of the map Returns ------- map : `~WcsMap` A WCS map object. """ from .wcsnd import WcsNDMap # from .wcssparse import WcsMapSparse geom = WcsGeom.create( npix=npix, binsz=binsz, width=width, proj=proj, skydir=skydir, coordsys=coordsys, refpix=refpix, axes=axes, conv=conv, ) if map_type == "wcs": return WcsNDMap(geom, dtype=dtype, meta=meta, unit=unit) elif map_type == "wcs-sparse": raise NotImplementedError else: raise ValueError("Invalid map type: {!r}".format(map_type))
[docs] @classmethod def from_hdulist(cls, hdu_list, hdu=None, hdu_bands=None): """Make a WcsMap object from a FITS HDUList. Parameters ---------- hdu_list : `~astropy.io.fits.HDUList` HDU list containing HDUs for map data and bands. hdu : str Name or index of the HDU with the map data. hdu_bands : str Name or index of the HDU with the BANDS table. Returns ------- wcs_map : `WcsMap` Map object """ if hdu is None: hdu = find_hdu(hdu_list) else: hdu = hdu_list[hdu] if hdu_bands is None: hdu_bands = find_bands_hdu(hdu_list, hdu) if hdu_bands is not None: hdu_bands = hdu_list[hdu_bands] return cls.from_hdu(hdu, hdu_bands)
[docs] def to_hdulist(self, hdu=None, hdu_bands=None, sparse=False, conv=None): """Convert to `~astropy.io.fits.HDUList`. Parameters ---------- hdu : str Name or index of the HDU with the map data. hdu_bands : str Name or index of the HDU with the BANDS table. sparse : bool Sparsify the map by only writing pixels with non-zero amplitude. conv : {'fgst-ccube','fgst-template','gadf',None}, optional FITS format convention. If None this will be set to the default convention of the map. Returns ------- hdu_list : `~astropy.io.fits.HDUList` """ if sparse: hdu = "SKYMAP" if hdu is None else hdu.upper() else: hdu = "PRIMARY" if hdu is None else hdu.upper() if sparse and hdu == "PRIMARY": raise ValueError("Sparse maps cannot be written to the PRIMARY HDU.") if self.geom.axes: hdu_bands_out = self.geom.make_bands_hdu( hdu=hdu_bands, hdu_skymap=hdu, conv=conv ) hdu_bands = hdu_bands_out.name else: hdu_bands = None hdu_out = self.make_hdu(hdu=hdu, hdu_bands=hdu_bands, sparse=sparse, conv=conv) hdu_out.header["META"] = json.dumps(self.meta) hdu_out.header["BUNIT"] = self.unit.to_string("fits") if hdu == "PRIMARY": hdulist = [hdu_out] else: hdulist = [fits.PrimaryHDU(), hdu_out] if self.geom.axes: hdulist += [hdu_bands_out] return fits.HDUList(hdulist)
[docs] def make_hdu(self, hdu="SKYMAP", hdu_bands=None, sparse=False, conv=None): """Make a FITS HDU from this map. Parameters ---------- hdu : str The HDU extension name. hdu_bands : str The HDU extension name for BANDS table. sparse : bool Set INDXSCHM to SPARSE and sparsify the map by only writing pixels with non-zero amplitude. Returns ------- hdu : `~astropy.io.fits.BinTableHDU` or `~astropy.io.fits.ImageHDU` HDU containing the map data. """ header = self.geom.make_header() if hdu_bands is not None: header["BANDSHDU"] = hdu_bands if sparse: hdu_out = self._make_hdu_sparse(self.data, self.geom.npix, hdu, header) elif hdu == "PRIMARY": hdu_out = fits.PrimaryHDU(self.data, header=header) else: hdu_out = fits.ImageHDU(self.data, header=header, name=hdu) return hdu_out
@staticmethod def _make_hdu_sparse(data, npix, hdu, header): shape = data.shape # We make a copy, because below we modify `data` to handle non-finite entries # TODO: The code below could probably be simplified to use expressions # that create new arrays instead of in-place modifications # But first: do we want / need the non-finite entry handling at all and always cast to 64-bit float? data = data.copy() if len(shape) == 2: data_flat = np.ravel(data) data_flat[~np.isfinite(data_flat)] = 0 nonzero = np.where(data_flat > 0) value = data_flat[nonzero].astype(float) cols = [ fits.Column("PIX", "J", array=nonzero[0]), fits.Column("VALUE", "E", array=value), ] elif npix[0].size == 1: shape_flat = shape[:-2] + (shape[-1] * shape[-2],) data_flat = np.ravel(data).reshape(shape_flat) data_flat[~np.isfinite(data_flat)] = 0 nonzero = np.where(data_flat > 0) channel = np.ravel_multi_index(nonzero[:-1], shape[:-2]) value = data_flat[nonzero].astype(float) cols = [ fits.Column("PIX", "J", array=nonzero[-1]), fits.Column("CHANNEL", "I", array=channel), fits.Column("VALUE", "E", array=value), ] else: data_flat = [] channel = [] pix = [] for i, _ in np.ndenumerate(npix[0]): data_i = np.ravel(data[i[::-1]]) data_i[~np.isfinite(data_i)] = 0 pix_i = np.where(data_i > 0) data_i = data_i[pix_i] data_flat += [data_i] pix += pix_i channel += [ np.ones(data_i.size, dtype=int) * np.ravel_multi_index(i[::-1], shape[:-2]) ] pix = np.concatenate(pix) channel = np.concatenate(channel) value = np.concatenate(data_flat).astype(float) cols = [ fits.Column("PIX", "J", array=pix), fits.Column("CHANNEL", "I", array=channel), fits.Column("VALUE", "E", array=value), ] return fits.BinTableHDU.from_columns(cols, header=header, name=hdu)