DMAnnihilation¶
-
class
gammapy.astro.darkmatter.DMAnnihilation(mass, channel, scale=1, jfactor=1, z=0, k=2)[source]¶ Bases:
gammapy.spectrum.models.SpectralModelSpectral model for dark matter annihilation.
The gamma-ray flux is computed as follows:
\[\frac{\mathrm d \phi}{\mathrm d E} = \frac{\langle \sigma\nu \rangle}{4\pi k m^2_{\mathrm{DM}}} \frac{\mathrm d N}{\mathrm dE} \times J(\Delta\Omega)\]Parameters: - mass :
Quantity Dark matter mass
- channel : str
Annihilation channel for
PrimaryFlux- scale : float
Scale parameter for model fitting
- jfact :
Quantity Integrated J-Factor needed when
SkyPointSourcespatial model is used- z: float
Redshift value
- k: int
Type of dark matter particle (k:2 Majorana, k:4 Dirac)
References
Examples
This is how to instantiate a
DMAnnihilationmodel:from astropy import units as u from gammapy.astro.darkmatter import DMAnnihilation channel = "b" massDM = 5000*u.Unit("GeV") jfactor = 3.41e19 * u.Unit("GeV2 cm-5") modelDM = DMAnnihilation(mass=massDM, channel=channel, jfactor=jfactor)
Attributes Summary
THERMAL_RELIC_CROSS_SECTIONThermally averaged annihilation cross-section channeljfactorkmassparametersParameters ( Parameters)primary_fluxscalezMethods Summary
__call__(self, energy)Call evaluate method of derived classes copy(self)A deep copy. energy_flux(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range. energy_flux_error(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range with error propagation. evaluate(self, energy, scale)Evaluate dark matter annihilation model. evaluate_error(self, energy)Evaluate spectral model with error propagation. from_dict(val)Create from dict. integral(self, emin, emax, \*\*kwargs)Integrate spectral model numerically. integral_error(self, emin, emax, \*\*kwargs)Integrate spectral model numerically with error propagation. inverse(self, value[, emin, emax])Return energy for a given function value of the spectral model. plot(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error(self, energy_range[, ax, …])Plot spectral model error band. spectral_index(self, energy[, epsilon])Compute spectral index at given energy. to_dict(self)Convert to dict. Attributes Documentation
-
THERMAL_RELIC_CROSS_SECTION= <Quantity 3.e-26 cm3 / s>¶ Thermally averaged annihilation cross-section
-
channel¶
-
jfactor¶
-
k¶
-
mass¶
-
parameters¶ Parameters (
Parameters)
-
primary_flux¶
-
scale¶
-
z¶
Methods Documentation
-
__call__(self, energy)¶ Call evaluate method of derived classes
-
copy(self)¶ A deep copy.
-
energy_flux(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity Tuple of energy flux and energy flux error.
- emin, emax :
-
evaluate_error(self, energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity Tuple of flux and flux error.
- energy :
-
classmethod
from_dict(val)¶ Create from dict.
-
integral(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
eminandemaxis given you have to setintervals=Trueif you want the integral in each energy bin.Parameters: - emin, emax :
Quantity Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error(self, emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentqnumerical root finding method.Parameters: Returns: - energy :
Quantity Energies at which the model has the given
value.
- energy :
-
plot(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plotBy default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes, optional Axis
- ax :
-
plot_error(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')andax.set_xscale("log", nonposx='clip')to create a log-log representation. The additional argumentnonposx='clip'avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()orplt.semilogy()explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')orplt.semilogy(nonposy='clip').Parameters: - ax :
Axes, optional Axis
- energy_range :
Quantity Plot range
- energy_unit : str,
Unit, optional Unit of the energy axis
- flux_unit : str,
Unit, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes, optional Axis
- ax :
-
spectral_index(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict(self)¶ Convert to dict.
- mass :