MapDataset¶
-
class
gammapy.cube.MapDataset(model, counts=None, exposure=None, mask_fit=None, psf=None, edisp=None, background_model=None, likelihood='cash', evaluation_mode='local', mask_safe=None)[source]¶ Bases:
gammapy.utils.fitting.DatasetPerform sky model likelihood fit on maps.
Parameters: - model :
SkyModelorSkyModels Source sky models.
- counts :
WcsNDMap Counts cube
- exposure :
WcsNDMap Exposure cube
- mask_fit :
ndarray Mask to apply to the likelihood for fitting.
- psf :
PSFKernel PSF kernel
- edisp :
EnergyDispersion Energy dispersion
- background_model :
BackgroundModelorBackgroundModels Background models to use for the fit.
- likelihood : {“cash”, “cstat”}
Likelihood function to use for the fit.
- evaluation_mode : {“local”, “global”}
Model evaluation mode.
The “local” mode evaluates the model components on smaller grids to save computation time. This mode is recommended for local optimization algorithms. The “global” evaluation mode evaluates the model components on the full map. This mode is recommended for global optimization algorithms.
- mask_safe :
ndarray Mask defining the safe data range.
Attributes Summary
data_shapeShape of the counts data (tuple) maskCombined fit and safe mask modelSky model to fit ( SkyModelorSkyModels)parametersList of parameters ( Parameters)Methods Summary
copy(self)A deep copy. likelihood(self)Total likelihood given the current model parameters. likelihood_per_bin(self)Likelihood per bin given the current model parameters npred(self)Predicted source and background counts ( Map).Attributes Documentation
-
data_shape¶ Shape of the counts data (tuple)
-
mask¶ Combined fit and safe mask
-
model¶ Sky model to fit (
SkyModelorSkyModels)
-
parameters¶ List of parameters (
Parameters)
Methods Documentation
-
copy(self)¶ A deep copy.
- model :