HDUIndexTable¶
-
class
gammapy.data.
HDUIndexTable
(data=None, masked=None, names=None, dtype=None, meta=None, copy=True, rows=None, copy_indices=True, **kwargs)[source]¶ Bases:
astropy.table.Table
HDU index table.
See HDU index table.
Attributes Summary
ColumnClass
VALID_HDU_CLASS
Valid values for HDU_CLASS
.VALID_HDU_TYPE
Valid values for HDU_TYPE
.base_dir
Base directory. colnames
dtype
groups
has_mixin_columns
True if table has any mixin columns (defined as columns that are not Column subclasses). hdu_class_unique
HDU classes (unique). hdu_type_unique
HDU types (unique). iloc
Return a TableILoc object that can be used for retrieving indexed rows in the order they appear in the index. indices
Return the indices associated with columns of the table as a TableIndices object. info
([option, out])loc
Return a TableLoc object that can be used for retrieving rows by index in a given data range. loc_indices
Return a TableLocIndices object that can be used for retrieving the row indices corresponding to given table index key value or values. mask
masked
meta
obs_id_unique
Observation IDs (unique). Methods Summary
add_column
(self, col[, index, name, …])Add a new Column object col
to the table.add_columns
(self, cols[, indexes, names, …])Add a list of new Column objects cols
to the table.add_index
(self, colnames[, engine, unique])Insert a new index among one or more columns. add_row
(self[, vals, mask])Add a new row to the end of the table. argsort
(self[, keys, kind])Return the indices which would sort the table according to one or more key columns. as_array
(self[, keep_byteorder])Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate). convert_bytestring_to_unicode
(self)Convert bytestring columns (dtype.kind=’S’) to unicode (dtype.kind=’U’) using UTF-8 encoding. convert_unicode_to_bytestring
(self)Convert unicode columns (dtype.kind=’U’) to bytestring (dtype.kind=’S’) using UTF-8 encoding. copy
(self[, copy_data])Return a copy of the table. field
(self, item)Return column[item] for recarray compatibility. filled
(self[, fill_value])Return a copy of self, with masked values filled. from_pandas
(dataframe)Create a Table
from apandas.DataFrame
instancegroup_by
(self, keys)Group this table by the specified keys
hdu_location
(self, obs_id[, hdu_type, hdu_class])Create HDULocation
for a given selection.index_column
(self, name)Return the positional index of column name
.index_mode
(self, mode)Return a context manager for an indexing mode. insert_row
(self, index[, vals, mask])Add a new row before the given index
position in the table.itercols
(self)Iterate over the columns of this table. keep_columns
(self, names)Keep only the columns specified (remove the others). keys
(self)location_info
(self, idx)Create HDULocation
for a given row index.more
(self[, max_lines, max_width, …])Interactively browse table with a paging interface. pformat
(self[, max_lines, max_width, …])Return a list of lines for the formatted string representation of the table. pprint
(self[, max_lines, max_width, …])Print a formatted string representation of the table. read
(filename, \*\*kwargs)Read HDU index table. remove_column
(self, name)Remove a column from the table. remove_columns
(self, names)Remove several columns from the table. remove_indices
(self, colname)Remove all indices involving the given column. remove_row
(self, index)Remove a row from the table. remove_rows
(self, row_specifier)Remove rows from the table. rename_column
(self, name, new_name)Rename a column. replace_column
(self, name, col)Replace column name
with the newcol
object.reverse
(self)Reverse the row order of table rows. row_idx
(self, obs_id[, hdu_type, hdu_class])Table row indices for a given selection. show_in_browser
(self[, max_lines, jsviewer, …])Render the table in HTML and show it in a web browser. show_in_notebook
(self[, tableid, css, …])Render the table in HTML and show it in the IPython notebook. sort
(self[, keys])Sort the table according to one or more keys. summary
(self)Summary report (str) to_pandas
(self)Return a pandas.DataFrame
instancewrite
(self, \*args, \*\*kwargs)Write this Table object out in the specified format. Attributes Documentation
-
ColumnClass
¶
-
VALID_HDU_CLASS
= ['events', 'gti', 'aeff_2d', 'edisp_2d', 'psf_table', 'psf_3gauss', 'psf_king', 'bkg_2d', 'bkg_3d']¶ Valid values for
HDU_CLASS
.
-
VALID_HDU_TYPE
= ['events', 'gti', 'aeff', 'edisp', 'psf', 'bkg']¶ Valid values for
HDU_TYPE
.
-
base_dir
¶ Base directory.
-
colnames
¶
-
dtype
¶
-
groups
¶
-
has_mixin_columns
¶ True if table has any mixin columns (defined as columns that are not Column subclasses).
-
hdu_class_unique
¶ HDU classes (unique).
-
hdu_type_unique
¶ HDU types (unique).
-
iloc
¶ Return a TableILoc object that can be used for retrieving indexed rows in the order they appear in the index.
-
indices
¶ Return the indices associated with columns of the table as a TableIndices object.
-
info
(option='attributes', out='')¶
-
loc
¶ Return a TableLoc object that can be used for retrieving rows by index in a given data range. Note that both loc and iloc work only with single-column indices.
-
loc_indices
¶ Return a TableLocIndices object that can be used for retrieving the row indices corresponding to given table index key value or values.
-
mask
¶
-
masked
¶
-
meta
¶
-
obs_id_unique
¶ Observation IDs (unique).
Methods Documentation
-
add_column
(self, col, index=None, name=None, rename_duplicate=False, copy=True)¶ Add a new Column object
col
to the table. Ifindex
is supplied then insert column beforeindex
position in the list of columns, otherwise append column to the end of the list.Parameters: - col : Column
Column object to add.
- index : int or
None
Insert column before this position or at end (default).
- name : str
Column name
- rename_duplicate : bool
Uniquify column name if it already exist. Default is False.
- copy : bool
Make a copy of the new column. Default is True.
Examples
Create a table with two columns ‘a’ and ‘b’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> print(t) a b --- --- 1 0.1 2 0.2 3 0.3
Create a third column ‘c’ and append it to the end of the table:
>>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> t.add_column(col_c) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Add column ‘d’ at position 1. Note that the column is inserted before the given index:
>>> col_d = Column(name='d', data=['a', 'b', 'c']) >>> t.add_column(col_d, 1) >>> print(t) a d b c --- --- --- --- 1 a 0.1 x 2 b 0.2 y 3 c 0.3 z
Add second column named ‘b’ with rename_duplicate:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3]) >>> t.add_column(col_b, rename_duplicate=True) >>> print(t) a b b_1 --- --- --- 1 0.1 1.1 2 0.2 1.2 3 0.3 1.3
Add an unnamed column or mixin object in the table using a default name or by specifying an explicit name with
name
. Name can also be overridden:>>> t = Table([[1, 2], [0.1, 0.2]], names=('a', 'b')) >>> col_c = Column(data=['x', 'y']) >>> t.add_column(col_c) >>> t.add_column(col_c, name='c') >>> col_b = Column(name='b', data=[1.1, 1.2]) >>> t.add_column(col_b, name='d') >>> print(t) a b col2 c d --- --- ---- --- --- 1 0.1 x x 1.1 2 0.2 y y 1.2
To add several columns use add_columns.
-
add_columns
(self, cols, indexes=None, names=None, copy=True, rename_duplicate=False)¶ Add a list of new Column objects
cols
to the table. If a corresponding list ofindexes
is supplied then insert column before eachindex
position in the original list of columns, otherwise append columns to the end of the list.Parameters: - cols : list of Columns
Column objects to add.
- indexes : list of ints or
None
Insert column before this position or at end (default).
- names : list of str
Column names
- copy : bool
Make a copy of the new columns. Default is True.
- rename_duplicate : bool
Uniquify new column names if they duplicate the existing ones. Default is False.
Examples
Create a table with two columns ‘a’ and ‘b’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> print(t) a b --- --- 1 0.1 2 0.2 3 0.3
Create column ‘c’ and ‘d’ and append them to the end of the table:
>>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> col_d = Column(name='d', data=['u', 'v', 'w']) >>> t.add_columns([col_c, col_d]) >>> print(t) a b c d --- --- --- --- 1 0.1 x u 2 0.2 y v 3 0.3 z w
Add column ‘c’ at position 0 and column ‘d’ at position 1. Note that the columns are inserted before the given position:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> col_d = Column(name='d', data=['u', 'v', 'w']) >>> t.add_columns([col_c, col_d], [0, 1]) >>> print(t) c a d b --- --- --- --- x 1 u 0.1 y 2 v 0.2 z 3 w 0.3
Add second column ‘b’ and column ‘c’ with
rename_duplicate
:>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> col_b = Column(name='b', data=[1.1, 1.2, 1.3]) >>> col_c = Column(name='c', data=['x', 'y', 'z']) >>> t.add_columns([col_b, col_c], rename_duplicate=True) >>> print(t) a b b_1 c --- --- --- --- 1 0.1 1.1 x 2 0.2 1.2 y 3 0.3 1.3 z
Add unnamed columns or mixin objects in the table using default names or by specifying explicit names with
names
. Names can also be overridden:>>> t = Table() >>> col_a = Column(data=['x', 'y']) >>> col_b = Column(name='b', data=['u', 'v']) >>> t.add_columns([col_a, col_b]) >>> t.add_columns([col_a, col_b], names=['c', 'd']) >>> print(t) col0 b c d ---- --- --- --- x u x u y v y v
-
add_index
(self, colnames, engine=None, unique=False)¶ Insert a new index among one or more columns. If there are no indices, make this index the primary table index.
Parameters: - colnames : str or list
List of column names (or a single column name) to index
- engine : type or None
Indexing engine class to use, from among SortedArray, BST, FastBST, FastRBT, and SCEngine. If the supplied argument is None (by default), use SortedArray.
- unique : bool
Whether the values of the index must be unique. Default is False.
-
add_row
(self, vals=None, mask=None)¶ Add a new row to the end of the table.
The
vals
argument can be:- sequence (e.g. tuple or list)
- Column values in the same order as table columns.
- mapping (e.g. dict)
- Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype.
None
- All values filled with np.zeros for the column dtype.
This method requires that the Table object “owns” the underlying array data. In particular one cannot add a row to a Table that was initialized with copy=False from an existing array.
The
mask
attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. ifvals
is an iterable, thenmask
should also be an iterable with the same length, and ifvals
is a mapping, thenmask
should be a dictionary.Parameters: Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[4,5],[7,8]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 4 7 2 5 8
Adding a new row with entries ‘3’ in ‘a’, ‘6’ in ‘b’ and ‘9’ in ‘c’:
>>> t.add_row([3,6,9]) >>> print(t) a b c --- --- --- 1 4 7 2 5 8 3 6 9
-
argsort
(self, keys=None, kind=None)¶ Return the indices which would sort the table according to one or more key columns. This simply calls the
numpy.argsort
function on the table with theorder
parameter set tokeys
.Parameters: - keys : str or list of str
The column name(s) to order the table by
- kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
Returns: - index_array : ndarray, int
Array of indices that sorts the table by the specified key column(s).
-
as_array
(self, keep_byteorder=False)¶ Return a new copy of the table in the form of a structured np.ndarray or np.ma.MaskedArray object (as appropriate).
Parameters: - keep_byteorder : bool, optional
By default the returned array has all columns in native byte order. However, if this option is
True
this preserves the byte order of all columns (if any are non-native).
Returns: - table_array : np.ndarray (unmasked) or np.ma.MaskedArray (masked)
Copy of table as a numpy structured array
-
convert_bytestring_to_unicode
(self)¶ Convert bytestring columns (dtype.kind=’S’) to unicode (dtype.kind=’U’) using UTF-8 encoding.
Internally this changes string columns to represent each character in the string with a 4-byte UCS-4 equivalent, so it is inefficient for memory but allows scripts to manipulate string arrays with natural syntax.
-
convert_unicode_to_bytestring
(self)¶ Convert unicode columns (dtype.kind=’U’) to bytestring (dtype.kind=’S’) using UTF-8 encoding.
When exporting a unicode string array to a file, it may be desirable to encode unicode columns as bytestrings.
-
copy
(self, copy_data=True)¶ Return a copy of the table.
Parameters: - copy_data : bool
If
True
(the default), copy the underlying data array. Otherwise, use the same data array. Themeta
is always deepcopied regardless of the value forcopy_data
.
-
field
(self, item)¶ Return column[item] for recarray compatibility.
-
filled
(self, fill_value=None)¶ Return a copy of self, with masked values filled.
If input
fill_value
supplied then that value is used for all masked entries in the table. Otherwise the individualfill_value
defined for each table column is used.Parameters: - fill_value : str
If supplied, this
fill_value
is used for all masked entries in the entire table.
Returns: - filled_table : Table
New table with masked values filled
-
classmethod
from_pandas
(dataframe)¶ Create a
Table
from apandas.DataFrame
instanceParameters: - dataframe :
pandas.DataFrame
The pandas
pandas.DataFrame
instance
Returns: - table :
Table
A
Table
(or subclass) instance
- dataframe :
-
group_by
(self, keys)¶ Group this table by the specified
keys
This effectively splits the table into groups which correspond to unique values of the
keys
grouping object. The output is a newTableGroups
which contains a copy of this table but sorted by row according tokeys
.The
keys
input togroup_by
can be specified in different ways:- String or list of strings corresponding to table column name(s)
- Numpy array (homogeneous or structured) with same length as this table
Table
with same length as this table
Parameters: - keys : str, list of str, numpy array, or
Table
Key grouping object
Returns: - out :
Table
New table with groups set
-
hdu_location
(self, obs_id, hdu_type=None, hdu_class=None)[source]¶ Create
HDULocation
for a given selection.Parameters: - obs_id : int
Observation ID
- hdu_type : str
HDU type (see
VALID_HDU_TYPE
)- hdu_class : str
HDU class (see
VALID_HDU_CLASS
)
Returns: - location :
HDULocation
HDU location
-
index_column
(self, name)¶ Return the positional index of column
name
.Parameters: - name : str
column name
Returns: - index : int
Positional index of column
name
.
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Get index of column ‘b’ of the table:
>>> t.index_column('b') 1
-
index_mode
(self, mode)¶ Return a context manager for an indexing mode.
Parameters: - mode : str
Either ‘freeze’, ‘copy_on_getitem’, or ‘discard_on_copy’. In ‘discard_on_copy’ mode, indices are not copied whenever columns or tables are copied. In ‘freeze’ mode, indices are not modified whenever columns are modified; at the exit of the context, indices refresh themselves based on column values. This mode is intended for scenarios in which one intends to make many additions or modifications in an indexed column. In ‘copy_on_getitem’ mode, indices are copied when taking column slices as well as table slices, so col[i0:i1] will preserve indices.
-
insert_row
(self, index, vals=None, mask=None)¶ Add a new row before the given
index
position in the table.The
vals
argument can be:- sequence (e.g. tuple or list)
- Column values in the same order as table columns.
- mapping (e.g. dict)
- Keys corresponding to column names. Missing values will be filled with np.zeros for the column dtype.
None
- All values filled with np.zeros for the column dtype.
The
mask
attribute should give (if desired) the mask for the values. The type of the mask should match that of the values, i.e. ifvals
is an iterable, thenmask
should also be an iterable with the same length, and ifvals
is a mapping, thenmask
should be a dictionary.Parameters:
-
itercols
(self)¶ Iterate over the columns of this table.
Examples
To iterate over the columns of a table:
>>> t = Table([[1], [2]]) >>> for col in t.itercols(): ... print(col) col0 ---- 1 col1 ---- 2
Using
itercols()
is similar tofor col in t.columns.values()
but is syntactically preferred.
-
keep_columns
(self, names)¶ Keep only the columns specified (remove the others).
Parameters: - names : list
A list containing the names of the columns to keep. All other columns will be removed.
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Specifying only a single column name keeps only this column. Keep only column ‘a’ of the table:
>>> t.keep_columns('a') >>> print(t) a --- 1 2 3
Specifying a list of column names is keeps is also possible. Keep columns ‘a’ and ‘c’ of the table:
>>> t = Table([[1, 2, 3],[0.1, 0.2, 0.3],['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.keep_columns(['a', 'c']) >>> print(t) a c --- --- 1 x 2 y 3 z
-
keys
(self)¶
-
location_info
(self, idx)[source]¶ Create
HDULocation
for a given row index.
-
more
(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False)¶ Interactively browse table with a paging interface.
Supported keys:
f, <space> : forward one page b : back one page r : refresh same page n : next row p : previous row < : go to beginning > : go to end q : quit browsing h : print this help
Parameters: - max_lines : int
Maximum number of lines in table output
- max_width : int or
None
Maximum character width of output
- show_name : bool
Include a header row for column names. Default is True.
- show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
- show_dtype : bool
Include a header row for column dtypes. Default is True.
-
pformat
(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, html=False, tableid=None, align=None, tableclass=None)¶ Return a list of lines for the formatted string representation of the table.
If no value of
max_lines
is supplied then the height of the screen terminal is used to setmax_lines
. If the terminal height cannot be determined then the default is taken from the configuration itemastropy.conf.max_lines
. If a negative value ofmax_lines
is supplied then there is no line limit applied.The same applies for
max_width
except the configuration item isastropy.conf.max_width
.Parameters: - max_lines : int or
None
Maximum number of rows to output
- max_width : int or
None
Maximum character width of output
- show_name : bool
Include a header row for column names. Default is True.
- show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
- show_dtype : bool
Include a header row for column dtypes. Default is True.
- html : bool
Format the output as an HTML table. Default is False.
- tableid : str or
None
An ID tag for the table; only used if html is set. Default is “table{id}”, where id is the unique integer id of the table object, id(self)
- align : str or list or tuple or
None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
- tableclass : str or list of str or
None
CSS classes for the table; only used if html is set. Default is None.
Returns: - lines : list
Formatted table as a list of strings.
- max_lines : int or
-
pprint
(self, max_lines=None, max_width=None, show_name=True, show_unit=None, show_dtype=False, align=None)¶ Print a formatted string representation of the table.
If no value of
max_lines
is supplied then the height of the screen terminal is used to setmax_lines
. If the terminal height cannot be determined then the default is taken from the configuration itemastropy.conf.max_lines
. If a negative value ofmax_lines
is supplied then there is no line limit applied.The same applies for max_width except the configuration item is
astropy.conf.max_width
.Parameters: - max_lines : int
Maximum number of lines in table output.
- max_width : int or
None
Maximum character width of output.
- show_name : bool
Include a header row for column names. Default is True.
- show_unit : bool
Include a header row for unit. Default is to show a row for units only if one or more columns has a defined value for the unit.
- show_dtype : bool
Include a header row for column dtypes. Default is True.
- align : str or list or tuple or
None
Left/right alignment of columns. Default is right (None) for all columns. Other allowed values are ‘>’, ‘<’, ‘^’, and ‘0=’ for right, left, centered, and 0-padded, respectively. A list of strings can be provided for alignment of tables with multiple columns.
-
classmethod
read
(filename, **kwargs)[source]¶ Read HDU index table.
Parameters: - filename :
pathlib.Path
, str Filename
- filename :
-
remove_column
(self, name)¶ Remove a column from the table.
This can also be done with:
del table[name]
Parameters: - name : str
Name of column to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove column ‘b’ from the table:
>>> t.remove_column('b') >>> print(t) a c --- --- 1 x 2 y 3 z
To remove several columns at the same time use remove_columns.
-
remove_columns
(self, names)¶ Remove several columns from the table.
Parameters: - names : list
A list containing the names of the columns to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove columns ‘b’ and ‘c’ from the table:
>>> t.remove_columns(['b', 'c']) >>> print(t) a --- 1 2 3
Specifying only a single column also works. Remove column ‘b’ from the table:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_columns('b') >>> print(t) a c --- --- 1 x 2 y 3 z
This gives the same as using remove_column.
-
remove_indices
(self, colname)¶ Remove all indices involving the given column. If the primary index is removed, the new primary index will be the most recently added remaining index.
Parameters: - colname : str
Name of column
-
remove_row
(self, index)¶ Remove a row from the table.
Parameters: - index : int
Index of row to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove row 1 from the table:
>>> t.remove_row(1) >>> print(t) a b c --- --- --- 1 0.1 x 3 0.3 z
To remove several rows at the same time use remove_rows.
-
remove_rows
(self, row_specifier)¶ Remove rows from the table.
Parameters: - row_specifier : slice, int, or array of ints
Specification for rows to remove
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
Remove rows 0 and 2 from the table:
>>> t.remove_rows([0, 2]) >>> print(t) a b c --- --- --- 2 0.2 y
Note that there are no warnings if the slice operator extends outside the data:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3], ['x', 'y', 'z']], ... names=('a', 'b', 'c')) >>> t.remove_rows(slice(10, 20, 1)) >>> print(t) a b c --- --- --- 1 0.1 x 2 0.2 y 3 0.3 z
-
rename_column
(self, name, new_name)¶ Rename a column.
This can also be done directly with by setting the
name
attribute for a column:table[name].name = new_name
TODO: this won’t work for mixins
Parameters: - name : str
The current name of the column.
- new_name : str
The new name for the column
Examples
Create a table with three columns ‘a’, ‘b’ and ‘c’:
>>> t = Table([[1,2],[3,4],[5,6]], names=('a','b','c')) >>> print(t) a b c --- --- --- 1 3 5 2 4 6
Renaming column ‘a’ to ‘aa’:
>>> t.rename_column('a' , 'aa') >>> print(t) aa b c --- --- --- 1 3 5 2 4 6
-
replace_column
(self, name, col)¶ Replace column
name
with the newcol
object.Parameters: - name : str
Name of column to replace
- col : column object (list, ndarray, Column, etc)
New column object to replace the existing column
Examples
Replace column ‘a’ with a float version of itself:
>>> t = Table([[1, 2, 3], [0.1, 0.2, 0.3]], names=('a', 'b')) >>> float_a = t['a'].astype(float) >>> t.replace_column('a', float_a)
-
reverse
(self)¶ Reverse the row order of table rows. The table is reversed in place and there are no function arguments.
Examples
Create a table with three columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'], ... [12,15,18]], names=('firstname','name','tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18
Reversing order:
>>> t.reverse() >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12
-
row_idx
(self, obs_id, hdu_type=None, hdu_class=None)[source]¶ Table row indices for a given selection.
Parameters: - obs_id : int
Observation ID
- hdu_type : str
HDU type (see
VALID_HDU_TYPE
)- hdu_class : str
HDU class (see
VALID_HDU_CLASS
)
Returns: - idx : list of int
List of row indices matching the selection.
-
show_in_browser
(self, max_lines=5000, jsviewer=False, browser='default', jskwargs={'use_local_files': True}, tableid=None, table_class='display compact', css=None, show_row_index='idx')¶ Render the table in HTML and show it in a web browser.
Parameters: - max_lines : int
Maximum number of rows to export to the table (set low by default to avoid memory issues, since the browser view requires duplicating the table in memory). A negative value of
max_lines
indicates no row limit.- jsviewer : bool
If
True
, prepends some javascript headers so that the table is rendered as a DataTables data table. This allows in-browser searching & sorting.- browser : str
Any legal browser name, e.g.
'firefox'
,'chrome'
,'safari'
(for mac, you may need to use'open -a "/Applications/Google Chrome.app" {}'
for Chrome). If'default'
, will use the system default browser.- jskwargs : dict
Passed to the
astropy.table.JSViewer
init. Defaults to{'use_local_files': True}
which means that the JavaScript libraries will be served from local copies.- tableid : str or
None
An html ID tag for the table. Default is
table{id}
, where id is the unique integer id of the table object, id(self).- table_class : str or
None
A string with a list of HTML classes used to style the table. Default is “display compact”, and other possible values can be found in https://www.datatables.net/manual/styling/classes
- css : string
A valid CSS string declaring the formatting for the table. Defaults to
astropy.table.jsviewer.DEFAULT_CSS
.- show_row_index : str or False
If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to “idx”.
-
show_in_notebook
(self, tableid=None, css=None, display_length=50, table_class='astropy-default', show_row_index='idx')¶ Render the table in HTML and show it in the IPython notebook.
Parameters: - tableid : str or
None
An html ID tag for the table. Default is
table{id}-XXX
, where id is the unique integer id of the table object, id(self), and XXX is a random number to avoid conflicts when printing the same table multiple times.- table_class : str or
None
A string with a list of HTML classes used to style the table. The special default string (‘astropy-default’) means that the string will be retrieved from the configuration item
astropy.table.default_notebook_table_class
. Note that these table classes may make use of bootstrap, as this is loaded with the notebook. See this page for the list of classes.- css : string
A valid CSS string declaring the formatting for the table. Defaults to
astropy.table.jsviewer.DEFAULT_CSS_NB
.- display_length : int, optional
Number or rows to show. Defaults to 50.
- show_row_index : str or False
If this does not evaluate to False, a column with the given name will be added to the version of the table that gets displayed. This new column shows the index of the row in the table itself, even when the displayed table is re-sorted by another column. Note that if a column with this name already exists, this option will be ignored. Defaults to “idx”.
Notes
Currently, unlike
show_in_browser
(withjsviewer=True
), this method needs to access online javascript code repositories. This is due to modern browsers’ limitations on accessing local files. Hence, if you call this method while offline (and don’t have a cached version of jquery and jquery.dataTables), you will not get the jsviewer features.- tableid : str or
-
sort
(self, keys=None)¶ Sort the table according to one or more keys. This operates on the existing table and does not return a new table.
Parameters: - keys : str or list of str
The key(s) to order the table by. If None, use the primary index of the Table.
Examples
Create a table with 3 columns:
>>> t = Table([['Max', 'Jo', 'John'], ['Miller','Miller','Jackson'], ... [12,15,18]], names=('firstname','name','tel')) >>> print(t) firstname name tel --------- ------- --- Max Miller 12 Jo Miller 15 John Jackson 18
Sorting according to standard sorting rules, first ‘name’ then ‘firstname’:
>>> t.sort(['name','firstname']) >>> print(t) firstname name tel --------- ------- --- John Jackson 18 Jo Miller 15 Max Miller 12
-
to_pandas
(self)¶ Return a
pandas.DataFrame
instanceReturns: - dataframe :
pandas.DataFrame
A pandas
pandas.DataFrame
instance
Raises: - ImportError
If pandas is not installed
- ValueError
If the Table contains mixin or multi-dimensional columns
- dataframe :
-
write
(self, *args, **kwargs)¶ Write this Table object out in the specified format.
This function provides the Table interface to the astropy unified I/O layer. This allows easily writing a file in many supported data formats using syntax such as:
>>> from astropy.table import Table >>> dat = Table([[1, 2], [3, 4]], names=('a', 'b')) >>> dat.write('table.dat', format='ascii')
See also: http://docs.astropy.org/en/stable/io/unified.html
Parameters: - format : str
File format specifier.
- serialize_method : str, dict, optional
Serialization method specifier for columns.
- *args : tuple, optional
Positional arguments passed through to data writer. If supplied the first argument is the output filename.
- **kwargs : dict, optional
Keyword arguments passed through to data writer.
Notes
The available built-in formats are:
Format Read Write Auto-identify Deprecated ascii Yes Yes No ascii.aastex Yes Yes No ascii.basic Yes Yes No ascii.commented_header Yes Yes No ascii.csv Yes Yes No ascii.ecsv Yes Yes Yes ascii.fast_basic Yes Yes No ascii.fast_commented_header Yes Yes No ascii.fast_csv Yes Yes No ascii.fast_no_header Yes Yes No ascii.fast_rdb Yes Yes No ascii.fast_tab Yes Yes No ascii.fixed_width Yes Yes No ascii.fixed_width_no_header Yes Yes No ascii.fixed_width_two_line Yes Yes No ascii.html Yes Yes Yes ascii.ipac Yes Yes No ascii.latex Yes Yes Yes ascii.no_header Yes Yes No ascii.rdb Yes Yes Yes ascii.rst Yes Yes No ascii.tab Yes Yes No fits Yes Yes Yes hdf5 Yes Yes Yes jsviewer No Yes No votable Yes Yes Yes aastex Yes Yes No Yes csv Yes Yes Yes Yes html Yes Yes No Yes ipac Yes Yes No Yes latex Yes Yes No Yes rdb Yes Yes No Yes Deprecated format names like
aastex
will be removed in a future version. Use the full name (e.g.ascii.aastex
) instead.
-