ExponentialCutoffPowerLaw¶
-
class
gammapy.spectrum.models.ExponentialCutoffPowerLaw(index=1.5, amplitude='1e-12 cm-2 s-1 TeV-1', reference='1 TeV', lambda_='0.1 TeV-1')[source]¶ Bases:
gammapy.spectrum.models.SpectralModelSpectral exponential cutoff power-law model.
\[\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma} \exp(-\lambda E)\]Parameters: Examples
This is how to plot the default
ExponentialCutoffPowerLawmodel:from astropy import units as u from gammapy.spectrum.models import ExponentialCutoffPowerLaw ecpl = ExponentialCutoffPowerLaw() ecpl.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Attributes Summary
amplitudee_peakSpectral energy distribution peak energy ( Quantity).indexlambda_parametersParameters ( Parameters)referenceMethods Summary
__call__(self, energy)Call evaluate method of derived classes copy(self)A deep copy. energy_flux(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range. energy_flux_error(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range with error propagation. evaluate(energy, index, amplitude, …)Evaluate the model (static function). evaluate_error(self, energy)Evaluate spectral model with error propagation. from_dict(val)Create from dict. integral(self, emin, emax, \*\*kwargs)Integrate spectral model numerically. integral_error(self, emin, emax, \*\*kwargs)Integrate spectral model numerically with error propagation. inverse(self, value[, emin, emax])Return energy for a given function value of the spectral model. plot(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error(self, energy_range[, ax, …])Plot spectral model error band. spectral_index(self, energy[, epsilon])Compute spectral index at given energy. to_dict(self)Convert to dict. Attributes Documentation
-
amplitude¶
-
e_peak¶ Spectral energy distribution peak energy (
Quantity).This is the peak in E^2 x dN/dE and is given by:
\[E_{Peak} = (2 - \Gamma) / \lambda\]
-
index¶
-
lambda_¶
-
parameters¶ Parameters (
Parameters)
-
reference¶
Methods Documentation
-
__call__(self, energy)¶ Call evaluate method of derived classes
-
copy(self)¶ A deep copy.
-
energy_flux(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity Tuple of energy flux and energy flux error.
- emin, emax :
-
static
evaluate(energy, index, amplitude, reference, lambda_)[source]¶ Evaluate the model (static function).
-
evaluate_error(self, energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity Tuple of flux and flux error.
- energy :
-
classmethod
from_dict(val)¶ Create from dict.
-
integral(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
eminandemaxis given you have to setintervals=Trueif you want the integral in each energy bin.Parameters: - emin, emax :
Quantity Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error(self, emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentqnumerical root finding method.Parameters: Returns: - energy :
Quantity Energies at which the model has the given
value.
- energy :
-
plot(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plotBy default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes, optional Axis
- ax :
-
plot_error(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')andax.set_xscale("log", nonposx='clip')to create a log-log representation. The additional argumentnonposx='clip'avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()orplt.semilogy()explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')orplt.semilogy(nonposy='clip').Parameters: - ax :
Axes, optional Axis
- energy_range :
Quantity Plot range
- energy_unit : str,
Unit, optional Unit of the energy axis
- flux_unit : str,
Unit, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes, optional Axis
- ax :
-
spectral_index(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict(self)¶ Convert to dict.
-