MapMakerRing¶
-
class
gammapy.cube.
MapMakerRing
(geom, offset_max, exclusion_mask=None, background_estimator=None)[source]¶ Bases:
gammapy.cube.MapMaker
Make maps from IACT observations.
The main motivation for this class in addition to the
MapMaker
is to have the common image background estimation methods, likeRingBackgroundEstimator
, that work using on and off maps.To ensure adequate statistics, only observations that are fully contained within the reference geometry will be analysed
Parameters: - geom :
WcsGeom
Reference image geometry
- offset_max :
Angle
Maximum offset angle
- exclusion_mask :
Map
Exclusion mask
- background_estimator :
RingBackgroundEstimator
or
AdaptiveRingBackgroundEstimator
Ring background estimator or something with an equivalent API.
Examples
Here is an example how to ise the MapMakerRing with H.E.S.S. DL3 data:
import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord from regions import CircleSkyRegion from gammapy.maps import Map, WcsGeom, MapAxis from gammapy.cube import MapMakerRing, RingBackgroundEstimator from gammapy.data import DataStore # Create observation list data_store = DataStore.from_file( "$GAMMAPY_DATA/hess-dl3-dr1/hess-dl3-dr3-with-background.fits.gz" ) data_sel = data_store.obs_table["TARGET_NAME"] == "MSH 15-52" obs_table = data_store.obs_table[data_sel] observations = data_store.get_observations(obs_table["OBS_ID"]) # Define the geom pos = SkyCoord(228.32, -59.08, unit="deg") energy_axis = MapAxis.from_edges(np.logspace(0, 5.0, 5), unit="TeV", name="energy") geom = WcsGeom.create(skydir=pos, binsz=0.02, width=(5, 5), axes=[energy_axis]) # Make a region mask regions = CircleSkyRegion(center=pos, radius=0.3 * u.deg) mask = Map.from_geom(geom) mask.data = mask.geom.region_mask([regions], inside=False) # Run map maker with ring background estimation ring_bkg = RingBackgroundEstimator(r_in="0.5 deg", width="0.3 deg") maker = MapMakerRing( geom=geom, offset_max="2 deg", exclusion_mask=mask, background_estimator=ring_bkg ) images = maker.run_images(observations)
Methods Summary
run
(self, observations)Run map making. run_images
(self, observations[, spectrum, …])Run image making. Methods Documentation
-
run
(self, observations)[source]¶ Run map making.
Parameters: - observations :
Observations
Observations to process
Returns: - maps : dict of
Map
Dictionary containing the following maps:
"on"
: counts map"exposure_on"
: on exposure map, which is just the template background map from the IRF"exposure_off"
: off exposure map convolved with the ring"off"
: off map
- observations :
-
run_images
(self, observations, spectrum=None, keepdims=False)[source]¶ Run image making.
The maps are summed over on the energy axis for a classical image analysis.
Parameters: - observations :
Observations
Observations to process
- spectrum :
SpectralModel
, optional Spectral model to compute the weights. Default is power-law with spectral index of 2.
- keepdims : bool, optional
If this is set to True, the energy axes is kept with a single bin. If False, the energy axes is removed
Returns: - maps : dict of
Map
Dictionary containing the following maps:
"on"
: counts map"exposure_on"
: on exposure map, which is just the template background map from the IRF"exposure_off"
: off exposure map convolved with the ring"off"
: off map
- observations :
- geom :