EventListBase¶
-
class
gammapy.data.
EventListBase
(table)[source]¶ Bases:
object
Event list.
This class represents the base for two different event lists: - EventList: targeted for IACT event lists - EventListLAT: targeted for Fermi-LAT event lists
Event list data is stored in
table
(Table
) data member.The most important reconstructed event parameters are available as the following columns:
TIME
- Mission elapsed time (sec)RA
,DEC
- ICRS system position (deg)ENERGY
- Energy (usually MeV for Fermi and TeV for IACTs)
Other optional (columns) that are sometimes useful for high-level analysis:
GLON
,GLAT
- Galactic coordinates (deg)DETX
,DETY
- Field of view coordinates (deg)
Note that when reading data for analysis you shouldn’t use those values directly, but access them via properties which create objects of the appropriate class:
Parameters: - table :
Table
Event list table
Attributes Summary
energy
Event energies ( Quantity
).galactic
Event Galactic sky coordinates ( SkyCoord
).observation_dead_time_fraction
Dead-time fraction (float). observation_live_time_duration
Live-time duration in seconds ( Quantity
).observation_time_end
Observation stop time ( Time
).observation_time_start
Observation start time ( Time
).offset
Event offset from the array pointing position ( Angle
).pointing_radec
Pointing RA / DEC sky coordinates ( SkyCoord
).radec
Event RA / DEC sky coordinates ( SkyCoord
).time
Event times ( Time
).time_ref
Time reference ( Time
).Methods Summary
check
(self[, checks])Run checks. plot_energy
(self[, ax, ebounds])Plot counts as a function of energy. plot_energy_offset
(self[, ax])Plot counts histogram with energy and offset axes. plot_offset2_distribution
(self[, ax, center])Plot offset^2 distribution of the events. plot_time
(self[, ax])Plots an event rate time curve. read
(filename, \*\*kwargs)Read from FITS file. select_energy
(self, energy_band)Select events in energy band. select_map_mask
(self, mask)Return EventList contained in a Map mask. select_parameter
(self, parameter, band)Select events with respect to a specified parameter. select_region
(self, region[, wcs])Select events in given region. select_row_subset
(self, row_specifier)Select table row subset. select_time
(self, time_interval)Select events in time interval. stack
(event_lists, \*\*kwargs)Stack (concatenate) list of event lists. Attributes Documentation
-
observation_dead_time_fraction
¶ Dead-time fraction (float).
Defined as dead-time over observation time.
Dead-time is defined as the time during the observation where the detector didn’t record events: https://en.wikipedia.org/wiki/Dead_time https://ui.adsabs.harvard.edu/abs/2004APh….22..285F
The dead-time fraction is used in the live-time computation, which in turn is used in the exposure and flux computation.
-
observation_live_time_duration
¶ Live-time duration in seconds (
Quantity
).The dead-time-corrected observation time.
- In Fermi-LAT it is automatically provided in the header of the event list.
- In IACTs is computed as
t_live = t_observation * (1 - f_dead)
where
f_dead
is the dead-time fraction.
-
time
¶ Event times (
Time
).Notes
Times are automatically converted to 64-bit floats. With 32-bit floats times will be incorrect by a few seconds when e.g. adding them to the reference time.
Methods Documentation
-
plot_offset2_distribution
(self, ax=None, center=None, **kwargs)[source]¶ Plot offset^2 distribution of the events.
The distribution shown in this plot is for this quantity:
offset = center.separation(events.radec).deg offset2 = offset ** 2
Note that this method is just for a quicklook plot.
If you want to do computations with the offset or offset^2 values, you can use the line above. As an example, here’s how to compute the 68% event containment radius using
numpy.percentile
:import numpy as np r68 = np.percentile(offset, q=68)
Parameters: - ax :
Axes
(optional) Axes
- center :
astropy.coordinates.SkyCoord
Center position for the offset^2 distribution. Default is the observation pointing position.
- **kwargs :
Extra keyword arguments are passed to
matplotlib.pyplot.hist
.
Returns: - ax :
Axes
Axes
Examples
Load an example event list:
>>> from gammapy.data import EventList >>> events = EventList.read('$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_023523.fits.gz')
Plot the offset^2 distribution wrt. the observation pointing position (this is a commonly used plot to check the background spatial distribution):
>>> events.plot_offset2_distribution()
Plot the offset^2 distribution wrt. the Crab pulsar position (this is commonly used to check both the gamma-ray signal and the background spatial distribution):
>>> import numpy as np >>> from astropy.coordinates import SkyCoord >>> center = SkyCoord(83.63307, 22.01449, unit='deg') >>> bins = np.linspace(start=0, stop=0.3 ** 2, num=30) >>> events.plot_offset2_distribution(center=center, bins=bins)
Note how we passed the
bins
option ofmatplotlib.pyplot.hist
to control the histogram binning, in this case 30 bins ranging from 0 to (0.3 deg)^2.- ax :
-
plot_time
(self, ax=None)[source]¶ Plots an event rate time curve.
Parameters: - ax :
Axes
or None Axes
Returns: - ax :
Axes
Axes
- ax :
-
classmethod
read
(filename, **kwargs)[source]¶ Read from FITS file.
Format specification: EVENTS
Parameters: - filename :
pathlib.Path
, str Filename
- filename :
-
select_energy
(self, energy_band)[source]¶ Select events in energy band.
Parameters: - energy_band :
Quantity
Energy band
[energy_min, energy_max)
Returns: - event_list :
EventList
Copy of event list with selection applied.
Examples
>>> from astropy.units import Quantity >>> from gammapy.data import EventList >>> event_list = EventList.read('events.fits') >>> energy_band = Quantity([1, 20], 'TeV') >>> event_list = event_list.select_energy()
- energy_band :
-
select_map_mask
(self, mask)[source]¶ Return EventList contained in a Map mask.
Parameters: - mask :
Map
the mask to be used
Returns: - eventlist :
EventList
- mask :
-
select_parameter
(self, parameter, band)[source]¶ Select events with respect to a specified parameter.
Parameters: - parameter : str
Parameter used for the selection. Must be present in
self.table
.- band : tuple or
astropy.units.Quantity
Min and max value for the parameter to be selected (min <= parameter < max). If parameter is not dimensionless you have to provide a Quantity.
Returns: - event_list :
EventList
Copy of event list with selection applied.
Examples
>>> from gammapy.data import EventList >>> event_list = EventList.read('events.fits') >>> phase_region = (0.3, 0.5) >>> event_list = event_list.select_parameter(parameter='PHASE', band=phase_region)
-
select_region
(self, region, wcs=None)[source]¶ Select events in given region.
Parameters: Returns: - event_list :
EventList
Copy of event list with selection applied.
- event_list :
-
select_row_subset
(self, row_specifier)[source]¶ Select table row subset.
Parameters: - row_specifier : slice, int, or array of ints
Specification for rows to select, passed on to
self.table[row_specifier]
.
Returns: - event_list :
EventList
New event list with table row subset selected
Examples
Use a boolean mask as
row_specifier
:mask = events.table[‘FOO’] > 42 events2 = events.select_row_subset(mask)Use row index array as
row_specifier
:idx = np.where(events.table[‘FOO’] > 42)[0] events2 = events.select_row_subset(idx)
-
select_time
(self, time_interval)[source]¶ Select events in time interval.
Parameters: - time_interval :
astropy.time.Time
Start time (inclusive) and stop time (exclusive) for the selection.
Returns: - events :
EventList
Copy of event list with selection applied.
- time_interval :