ConstantTemporalModel¶
-
class
gammapy.modeling.models.ConstantTemporalModel(norm)[source]¶ Bases:
gammapy.modeling.models.TemporalModelConstant temporal model.
Parameters: - norm : float
The normalization of the constant temporal model
Attributes Summary
parametersParameters ( Parameters)tagMethods Summary
copy(self)A deep copy. create(tag, \*args, \*\*kwargs)Create a model instance. evaluate_norm_at_time(self, time)Evaluate for a given time. from_dict(data)sample_time(self, n_events, t_min, t_max[, …])Sample arrival times of events. to_dict(self)Attributes Documentation
-
parameters¶ Parameters (
Parameters)
-
tag= 'ConstantTemporalModel'¶
Methods Documentation
-
copy(self)¶ A deep copy.
-
static
create(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
evaluate_norm_at_time(self, time)[source]¶ Evaluate for a given time.
Parameters: - time : array_like
Time since the
referencetime.
Returns: - norm : float
Mean norm
-
classmethod
from_dict(data)¶
-
sample_time(self, n_events, t_min, t_max, random_state=0)[source]¶ Sample arrival times of events.
Parameters: - n_events : int
Number of events to sample.
- t_min :
Time Start time of the sampling.
- t_max :
Time Stop time of the sampling.
- random_state : {int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
Returns: - time :
Quantity Array with times of the sampled events.
-
to_dict(self)¶