ScaleSpectralModel¶
-
class
gammapy.modeling.models.
ScaleSpectralModel
(model, norm=1)[source]¶ Bases:
gammapy.modeling.models.SpectralModel
Wrapper to scale another spectral model by a norm factor.
Parameters: - model :
SpectralModel
Spectral model to wrap.
- norm : float
Multiplicative norm factor for the model value.
Attributes Summary
model
norm
parameters
Parameters ( Parameters
)tag
Methods Summary
__call__
(self, energy)Call self as a function. copy
(self)A deep copy. create
(tag, \*args, \*\*kwargs)Create a model instance. energy_flux
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range. energy_flux_error
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range with error propagation. evaluate
(self, energy, norm)evaluate_error
(self, energy)Evaluate spectral model with error propagation. from_dict
(data)integral
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically. integral_error
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically with error propagation. inverse
(self, value[, emin, emax])Return energy for a given function value of the spectral model. plot
(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error
(self, energy_range[, ax, …])Plot spectral model error band. spectral_index
(self, energy[, epsilon])Compute spectral index at given energy. to_dict
(self)Attributes Documentation
-
model
¶
-
norm
¶
-
parameters
¶ Parameters (
Parameters
)
-
tag
= 'ScaleSpectralModel'¶
Methods Documentation
-
__call__
(self, energy)¶ Call self as a function.
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
energy_flux
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity
Tuple of energy flux and energy flux error.
- emin, emax :
-
evaluate_error
(self, energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity
Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity
Tuple of flux and flux error.
- energy :
-
classmethod
from_dict
(data)¶
-
integral
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
emin
andemax
is given you have to setintervals=True
if you want the integral in each energy bin.Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity
Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity
Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse
(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentq
numerical root finding method.Parameters: Returns: - energy :
Quantity
Energies at which the model has the given
value
.
- energy :
-
plot
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plot
By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel from astropy import units as u pwl = ExpCutoffPowerLawSpectralModel() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes
, optional Axis
- ax :
-
plot_error
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')
andax.set_xscale("log", nonposx='clip')
to create a log-log representation. The additional argumentnonposx='clip'
avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()
orplt.semilogy()
explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')
orplt.semilogy(nonposy='clip')
.Parameters: - ax :
Axes
, optional Axis
- energy_range :
Quantity
Plot range
- energy_unit : str,
Unit
, optional Unit of the energy axis
- flux_unit : str,
Unit
, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes
, optional Axis
- ax :
-
spectral_index
(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity
Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict
(self)¶
- model :