# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
from astropy.io import fits
from .sparse import SparseArray
from .geom import pix_tuple_to_idx
from .hpxmap import HpxMap
from .hpx import HpxGeom
__all__ = ["HpxSparseMap"]
[docs]class HpxSparseMap(HpxMap):
"""Representation of a N+2D map using HEALPIX with two spatial
dimensions and N non-spatial dimensions.
This class uses a sparse matrix for HEALPix pixel values.
Parameters
----------
geom : `~gammapy.maps.HpxGeom`
HEALPIX geometry object.
data : `~numpy.ndarray`
HEALPIX data array.
meta : `~collections.OrderedDict`
Dictionary to store meta data.
unit : `~astropy.units.Unit`
The map unit
"""
def __init__(self, geom, data=None, dtype="float32", meta=None, unit=""):
if data is None:
shape = tuple([np.max(geom.npix)] + [ax.nbin for ax in geom.axes])
data = SparseArray(shape[::-1], dtype=dtype)
elif isinstance(data, np.ndarray):
data = SparseArray.from_array(data)
super(HpxSparseMap, self).__init__(geom, data, meta, unit)
[docs] @classmethod
def from_hdu(cls, hdu, hdu_bands=None):
"""Create from a FITS HDU.
Parameters
----------
hdu : `~astropy.io.fits.BinTableHDU`
The FITS HDU
hdu_bands : `~astropy.io.fits.BinTableHDU`
The BANDS table HDU
"""
hpx = HpxGeom.from_header(hdu.header, hdu_bands)
shape = tuple([ax.nbin for ax in hpx.axes[::-1]])
# TODO: Should we support extracting slices?
meta = cls._get_meta_from_header(hdu.header)
map_out = cls(hpx, meta=meta)
colnames = hdu.columns.names
cnames = []
if hdu.header["INDXSCHM"] == "SPARSE":
pix = hdu.data.field("PIX")
vals = hdu.data.field("VALUE")
if "CHANNEL" in hdu.data.columns.names:
chan = hdu.data.field("CHANNEL")
chan = np.unravel_index(chan, shape)
idx = chan + (pix,)
else:
idx = (pix,)
map_out.set_by_idx(idx[::-1], vals)
else:
for c in colnames:
if c.find(hpx.conv.colstring) == 0:
cnames.append(c)
if len(cnames) == 1:
# Use [...] to force dense array indexing
map_out.data[...] = hdu.data.field(cnames[0])
else:
for i, cname in enumerate(cnames):
idx = np.unravel_index(i, shape)
map_out.data[idx + (slice(None),)] = hdu.data.field(cname)
return map_out
[docs] def get_by_pix(self, pix, interp=None):
if interp is None:
return self.get_by_idx(pix)
else:
raise NotImplementedError
[docs] def get_by_idx(self, idx):
# Convert to local pixel indices
idx = pix_tuple_to_idx(idx)
idx = self.geom.global_to_local(idx)
return self.data[idx[::-1]]
[docs] def interp_by_coord(self, coords, interp=None):
raise NotImplementedError
[docs] def interp_by_pix(self, pix, interp=None):
raise NotImplementedError
[docs] def fill_by_idx(self, idx, weights=None):
idx = pix_tuple_to_idx(idx)
if weights is None:
weights = np.ones(idx[0].shape)
idx = self.geom.global_to_local(idx)
idx_flat = np.ravel_multi_index(idx, self.data.shape[::-1])
idx_flat, idx_inv = np.unique(idx_flat, return_inverse=True)
idx = np.unravel_index(idx_flat, self.data.shape[::-1])
weights = np.bincount(idx_inv, weights=weights)
self.data.set(idx[::-1], weights, fill=True)
[docs] def set_by_idx(self, idx, vals):
idx = pix_tuple_to_idx(idx)
idx = self.geom.global_to_local(idx)
self.data[idx[::-1]] = vals
def _make_cols(self, header, conv):
shape = self.data.shape
cols = []
if header["INDXSCHM"] == "SPARSE":
array = self.data.data.astype(float)
idx = np.unravel_index(self.data.idx, shape)
pix = self.geom.local_to_global(idx[::-1])[0]
if len(shape) == 1:
cols.append(fits.Column("PIX", "J", array=pix))
cols.append(fits.Column("VALUE", "E", array=array))
else:
channel = np.ravel_multi_index(idx[:-1], shape[:-1])
cols.append(fits.Column("PIX", "J", array=pix))
cols.append(fits.Column("CHANNEL", "I", array=channel))
cols.append(fits.Column("VALUE", "E", array=array))
elif len(shape) == 1:
name = conv.colname(indx=conv.firstcol)
# Use [...] to instantiate a dense array
array = self.data[...].astype(float)
cols.append(fits.Column(name, "E", array=array))
else:
# FIXME: We should be filling undefined pixels here with NaN
for i, idx in enumerate(np.ndindex(shape[:-1])):
name = conv.colname(indx=i + conv.firstcol)
# Use [...] to instantiate a dense array
array = self.data[...][idx].astype(float)
cols.append(fits.Column(name, "E", array=array))
return cols
[docs] def iter_by_image(self):
raise NotImplementedError
[docs] def iter_by_pix(self):
raise NotImplementedError
[docs] def iter_by_coord(self):
raise NotImplementedError
[docs] def sum_over_axes(self):
raise NotImplementedError
[docs] def pad(self, pad_width):
raise NotImplementedError
[docs] def crop(self, crop_width):
raise NotImplementedError
[docs] def upsample(self, factor):
raise NotImplementedError
[docs] def downsample(self, factor):
raise NotImplementedError
[docs] def to_wcs(self, sum_bands=False, normalize=True, proj="AIT", oversample=2):
raise NotImplementedError
[docs] def to_swapped(self):
raise NotImplementedError
[docs] def to_ud_graded(self):
raise NotImplementedError