# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
from ..spectrum import (
SpectrumEnergyGroupMaker,
FluxPointEstimator,
SpectrumExtraction,
SpectrumFit,
SpectrumResult,
)
from ..background import ReflectedRegionsBackgroundEstimator
from ..utils.scripts import make_path
__all__ = ["SpectrumAnalysisIACT"]
log = logging.getLogger(__name__)
[docs]class SpectrumAnalysisIACT(object):
"""High-level analysis class to perform a full 1D IACT spectral analysis.
Observation selection must have happened before.
For a usage example see :gp-extra-notebook:`spectrum_pipe`
Config options:
* outdir : `~gammapy.extern.pathlib.Path`, str
Output folder, None means no output
* background : dict
Forwarded to `~gammapy.background.ReflectedRegionsBackgroundEstimator`
* extraction : dict
Forwarded to `~gammapy.spectrum.SpectrumExtraction`
* fit : dict
Forwareded to `~gammapy.spectrum.SpectrumFit`
* fp_binning : `~astropy.units.Quantity`
Flux points binning
Parameters
----------
observations : `~gammapy.data.ObservationList`
Observations to analyse
config : dict
Config dict
"""
def __init__(self, observations, config):
self.observations = observations
self.config = config
def __str__(self):
ss = self.__class__.__name__
ss += "\n{}".format(self.observations)
ss += "\n{}".format(self.config)
return ss
[docs] def run(self, optimize_opts=None):
"""Run all steps."""
log.info("Running {}".format(self.__class__.__name__))
self.run_extraction()
self.run_fit(optimize_opts)
[docs] def run_fit(self, optimize_opts=None):
"""Run all step for the spectrum fit."""
self.fit = SpectrumFit(
obs_list=self.extraction.observations, **self.config["fit"]
)
self.fit.run(optimize_opts=optimize_opts)
modelname = self.fit.result[0].model.__class__.__name__
filename = make_path(self.config["outdir"]) / "fit_result_{}.yaml".format(
modelname
)
self.fit.result[0].to_yaml(filename=filename)
# TODO: Don't stack again if SpectrumFit has already done the stacking
stacked_obs = self.extraction.observations.stack()
self.egm = SpectrumEnergyGroupMaker(stacked_obs)
self.egm.compute_groups_fixed(self.config["fp_binning"])
self.flux_point_estimator = FluxPointEstimator(
groups=self.egm.groups,
model=self.fit.result[0].model,
obs=self.extraction.observations,
)
self.flux_point_estimator.compute_points()
@property
def spectrum_result(self):
"""`~gammapy.spectrum.SpectrumResult`"""
return SpectrumResult(
points=self.flux_point_estimator.flux_points, model=self.fit.result[0].model
)