ASmooth¶
-
class
gammapy.image.ASmooth(kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>, method='simple', threshold=5, scales=None)[source]¶ Bases:
objectAdaptively smooth counts image.
Achieves a roughly constant significance of features across the whole image.
Algorithm based on http://adsabs.harvard.edu/abs/2006MNRAS.368…65E
The algorithm was slightly adapted to also allow Li & Ma and TS to estimate the significance of a feature in the image.
Parameters: kernel :
astropy.convolution.KernelSmoothing kernel.
method : {‘simple’, ‘asmooth’, ‘lima’}
Significance estimation method.
threshold : float
Significance threshold.
scales :
QuantitySmoothing scales.
Methods Summary
kernels(pixel_scale)Ring kernels according to the specified method. make_scales(n_scales[, factor, kernel])Create list of Gaussian widths. run(counts[, background, exposure])Run image smoothing. Methods Documentation
-
kernels(pixel_scale)[source]¶ Ring kernels according to the specified method.
Parameters: pixel_scale :
AngleSky image pixel scale
Returns: kernels : list
List of
Kernel
-
static
make_scales(n_scales, factor=1.4142135623730951, kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>)[source]¶ Create list of Gaussian widths.
-
run(counts, background=None, exposure=None)[source]¶ Run image smoothing.
Parameters: counts :
WcsNDMapCounts map
background :
WcsNDMapBackground map
exposure :
WcsNDMapExposure map
Returns: images : dict of
WcsNDMap- Smoothed images; keys are:
- ‘counts’
- ‘background’
- ‘flux’ (optional)
- ‘scales’
- ‘significance’.
-