Background2D¶
-
class
gammapy.irf.Background2D(energy_lo, energy_hi, offset_lo, offset_hi, data, meta=None, interp_kwargs=None)[source]¶ Bases:
objectBackground 2D.
Data format specification: BKG_2D
Parameters: energy_lo, energy_hi :
QuantityEnergy binning
offset_lo, offset_hi :
QuantityFOV coordinate offset-axis binning
data :
QuantityBackground rate (usually:
s^-1 MeV^-1 sr^-1)Attributes Summary
default_interp_kwargsDefault Interpolation kwargs for NDDataArray.Methods Summary
evaluate(fov_lon, fov_lat, energy_reco[, method])Evaluate at a given FOV position and energy. from_hdulist(hdulist[, hdu])Create from HDUList.from_table(table)Read from Table.integrate_on_energy_range(fov_lon, fov_lat, …)Integrate over an energy range. peek()plot(**kwargs)read(filename[, hdu])Read from file. to_3d()Convert to Background3D.to_fits([name])Convert to BinTableHDU.to_table()Convert to Table.Attributes Documentation
-
default_interp_kwargs= {'bounds_error': False, 'fill_value': None}¶ Default Interpolation kwargs for
NDDataArray. Extrapolate.
Methods Documentation
-
evaluate(fov_lon, fov_lat, energy_reco, method='linear', **kwargs)[source]¶ Evaluate at a given FOV position and energy. The fov_lon, fov_lat, energy_reco has to have the same shape since this is a set of points on which you want to evaluate
To have the same API than background 3D for the background evaluation, the offset is
fov_altaz_lon.Parameters: fov_lon, fov_lat :
AngleFOV coordinates expecting in AltAz frame, same shape than energy_reco
energy_reco :
QuantityReconstructed energy, same dimension than fov_lat and fov_lat
method : str {‘linear’, ‘nearest’}, optional
Interpolation method
kwargs : dict
option for interpolation for
RegularGridInterpolatorReturns: array :
QuantityInterpolated values, axis order is the same as for the NDData array
-
integrate_on_energy_range(fov_lon, fov_lat, energy_range, n_integration_bins=1, method='linear', **kwargs)[source]¶ Integrate over an energy range.
Parameters: fov_lon, fov_lat :
AngleFOV coordinates expecting in AltAz frame.
energy_range: `~astropy.units.Quantity`
Energy range
n_integration_bins : int
Number of bins in the energy range
method : {‘linear’, ‘nearest’}, optional
Interpolation method
kwargs : dict
Passed to
scipy.interpolate.RegularGridInterpolator.Returns: array :
QuantityReturns 2D array with axes offset
-
to_3d()[source]¶ Convert to
Background3D.Fill in a radially symmetric way.
-
to_fits(name='BACKGROUND')[source]¶ Convert to
BinTableHDU.
-