Parameters¶
-
class
gammapy.utils.fitting.Parameters(parameters, covariance=None, apply_autoscale=True)[source]¶ Bases:
objectList of
Parameter.Holds covariance matrix
Parameters: parameters : list of
ParameterList of parameters
covariance :
ndarray, optionalParameters covariance matrix. Order of values as specified by
parameters.apply_autoscale : bool, optional
Flag for optimizers, if True parameters are autoscaled before the fit, see
autoscaleAttributes Summary
namesList of parameter names parametersList of Parameter.Methods Summary
autoscale([method])Autoscale all parameters. copy()A deep copy covariance_to_table()Convert covariance matrix to Table.error(parname)Get parameter error. from_dict(val)set_covariance_factors(matrix)Set covariance from factor covariance matrix. set_error(parname, err)Set parameter error. set_parameter_errors(errors)Set uncorrelated parameters errors. set_parameter_factors(factors)Set factor of all parameters. to_dict()to_table()Convert parameter attributes to Table.Attributes Documentation
-
names¶ List of parameter names
Methods Documentation
-
autoscale(method='scale10')[source]¶ Autoscale all parameters.
See
autoscale()Parameters: method : {‘factor1’, ‘scale10’}
Method to apply
-
set_covariance_factors(matrix)[source]¶ Set covariance from factor covariance matrix.
Used in the optimiser interface.
-
set_error(parname, err)[source]¶ Set parameter error.
Parameters: parname : str, int
Parameter name or index
err : float or Quantity
Parameter error
-
set_parameter_errors(errors)[source]¶ Set uncorrelated parameters errors.
Parameters: errors : dict of
QuantityDict of parameter errors.
-