Background3D¶
-
class
gammapy.irf.Background3D(energy_lo, energy_hi, fov_lon_lo, fov_lon_hi, fov_lat_lo, fov_lat_hi, data, meta=None, interp_kwargs=None)[source]¶ Bases:
objectBackground 3D.
Data format specification: BKG_3D
Parameters: Examples
Here’s an example you can use to learn about this class:
>>> from gammapy.irf import Background3D >>> filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' >>> bkg_3d = Background3D.read(filename, hdu='BACKGROUND') >>> print(bkg_3d) Background3D NDDataArray summary info energy : size = 21, min = 0.016 TeV, max = 158.489 TeV fov_lon : size = 36, min = -5.833 deg, max = 5.833 deg fov_lat : size = 36, min = -5.833 deg, max = 5.833 deg Data : size = 27216, min = 0.000 1 / (MeV s sr), max = 0.421 1 / (MeV s sr)
Attributes Summary
default_interp_kwargsDefault Interpolation kwargs for NDDataArray.Methods Summary
evaluate(self, fov_lon, fov_lat, energy_reco)Evaluate at given FOV position and energy. evaluate_integrate(self, fov_lon, fov_lat, …)Evaluate at given FOV position and energy edges by integrating over the energy axes. from_hdulist(hdulist[, hdu])Create from HDUList.from_table(table)Read from Table.read(filename[, hdu])Read from file. to_2d(self)Convert to Background2D.to_fits(self[, name])Convert to BinTableHDU.to_table(self)Convert to Table.Attributes Documentation
-
default_interp_kwargs= {'bounds_error': False, 'fill_value': None, 'values_scale': 'log'}¶ Default Interpolation kwargs for
NDDataArray. Extrapolate.
Methods Documentation
-
evaluate(self, fov_lon, fov_lat, energy_reco, method='linear', **kwargs)[source]¶ Evaluate at given FOV position and energy.
Parameters: - fov_lon, fov_lat :
Angle FOV coordinates expecting in AltAz frame.
- energy_reco :
Quantity energy on which you want to interpolate. Same dimension than fov_lat and fov_lat
- method : str {‘linear’, ‘nearest’}, optional
Interpolation method
- kwargs : dict
option for interpolation for
RegularGridInterpolator
Returns: - array :
Quantity Interpolated values, axis order is the same as for the NDData array
- fov_lon, fov_lat :
-
evaluate_integrate(self, fov_lon, fov_lat, energy_reco, method='linear', **kwargs)[source]¶ Evaluate at given FOV position and energy edges by integrating over the energy axes.
Parameters: - fov_lon, fov_lat :
Angle FOV coordinates expecting in AltAz frame.
- energy_reco: `~astropy.units.Quantity`
Reconstructed energy edges.
- method : {‘linear’, ‘nearest’}, optional
Interpolation method
Returns: - array :
Quantity Returns 2D array with axes offset
- fov_lon, fov_lat :
-
to_2d(self)[source]¶ Convert to
Background2D.This takes the values at Y = 0 and X >= 0.
-
to_fits(self, name='BACKGROUND')[source]¶ Convert to
BinTableHDU.
-